Memory Efficient Class-Incremental Learning for Image Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Memory-Efficient NBNN Image Classification

Naive Bays Nearest Neighbor (NBNN) is a simple image classifier based on identifying nearest neighbors. NBNN uses original image descriptors (e.g., SIFTs) without vector quantization for preserving the discriminative power of descriptors and has a powerful generalization characteristic. It, however, has a distinct disadvantage; its memory requirement can be prohibitively high as we have a large...

متن کامل

Between-class Learning for Image Classification

In this paper, we propose a novel learning method for image classification called Between-Class learning (BC learning)1. We generate between-class images by mixing two images belonging to different classes with a random ratio. We then input the mixed image to the model and train the model to output the mixing ratio. BC learning has the ability to impose constraints on the shape of the feature d...

متن کامل

Incremental SampleBoost for Efficient Learning from Multi-Class Data Sets

Ensemble methods have been used for incremental learning. Yet, there are several issues that require attention, including elongated training time and smooth integration of new examples. In this article, we introduce an incremental SampleBoost method that learns efficiently from new data by employing a class-based down sampling strategy with an error parameter. Our novel weight initialization sc...

متن کامل

Image-to-Class Distance Metric Learning for Image Classification

Image-To-Class (I2C) distance is first used in Naive-Bayes Nearest-Neighbor (NBNN) classifier for image classification and has successfully handled datasets with large intra-class variances. However, the performance of this distance relies heavily on the large number of local features in the training set and test image, which need heavy computation cost for nearest-neighbor (NN) search in the t...

متن کامل

Incremental One-Class Models for Data Classification

In this paper we outline a PhD research plan. This research contributes to the field of one-class incremental learning and classification in case of non-stationary environments. The goal of this PhD is to define a new classification framework able to deal with very small learning dataset at the beginning of the process and with abilities to adjust itself according to the variability of the inco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems

سال: 2021

ISSN: 2162-237X,2162-2388

DOI: 10.1109/tnnls.2021.3072041