MesoRD 1.0: Stochastic reaction-diffusion simulations in the microscopic limit

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MesoRD 1.0: Stochastic reaction-diffusion simulations in the microscopic limit

SUMMARY MesoRD is a tool for simulating stochastic reaction-diffusion systems as modeled by the reaction diffusion master equation. The simulated systems are defined in the Systems Biology Markup Language with additions to define compartment geometries. MesoRD 1.0 supports scale-dependent reaction rate constants and reactions between reactants in neighbouring subvolumes. These new features make...

متن کامل

Stochastic reaction-diffusion simulation with MesoRD

UNLABELLED MesoRD is a tool for stochastic simulation of chemical reactions and diffusion. In particular, it is an implementation of the next subvolume method, which is an exact method to simulate the Markov process corresponding to the reaction-diffusion master equation. AVAILABILITY MesoRD is free software, written in C++ and licensed under the GNU general public license (GPL). MesoRD runs ...

متن کامل

Stochastic reaction-diffusion kinetics in the microscopic limit.

Quantitative analysis of biochemical networks often requires consideration of both spatial and stochastic aspects of chemical processes. Despite significant progress in the field, it is still computationally prohibitive to simulate systems involving many reactants or complex geometries using a microscopic framework that includes the finest length and time scales of diffusion-limited molecular i...

متن کامل

Taking the reaction-diffusion master equation to the microscopic limit

The reaction-diffusion master equation (RDME) is commonly used to model processes where both the spatial and stochastic nature of chemical reactions need to be considered. We show that the RDME in many cases is inconsistent with a microscopic description of diffusion limited chemical reactions and that this will result in unphysical results. We describe how the inconsistency can be reconciled i...

متن کامل

The two-regime method for optimizing stochastic reaction-diffusion simulations.

Spatial organization and noise play an important role in molecular systems biology. In recent years, a number of software packages have been developed for stochastic spatio-temporal simulation, ranging from detailed molecular-based approaches to less detailed compartment-based simulations. Compartment-based approaches yield quick and accurate mesoscopic results, but lack the level of detail tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2012

ISSN: 1367-4803,1460-2059

DOI: 10.1093/bioinformatics/bts584