MetaInv-Net: Meta Inversion Network for Sparse View CT Image Reconstruction

نویسندگان

چکیده

X-ray Computed Tomography (CT) is widely used in clinical applications such as diagnosis and image-guided interventions. In this paper, we propose a new deep learning based model for CT image reconstruction with the backbone network architecture built by unrolling an iterative algorithm. However, unlike existing strategy to include many data-adaptive components unrolled dynamics possible, find that it enough only learn parts where traditional designs mostly rely on intuitions experience. More specifically, initializer conjugate gradient (CG) algorithm involved one of subproblems model. Other components, priors hyperparameters, are kept original design. Since hypernetwork introduced inference initialization CG module, makes proposed certain meta-learning Therefore, shall call meta-inversion (MetaInv-Net). The MetaInv-Net can be designed much less trainable parameters while still preserves its superior performance than some state-of-the-art models imaging. simulated real data experiments, performs very well generalized beyond training setting, i.e., other scanning settings, noise levels, sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep-neural-network based sinogram synthesis for sparse-view CT image reconstruction

Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option to the low-dose CT, and sparse-view CT has been particularly of interest among the researchers in ...

متن کامل

Split-Bregman-based sparse-view CT reconstruction

Total variation minimization has been extensively researched for image denoising and sparse view reconstruction. These methods show superior denoising performance for simple images with little texture, but result in texture information loss when applied to more complex images. It could thus be beneficial to use other regularizers within medical imaging. We propose a general regularization metho...

متن کامل

Iterative Image Reconstruction for Sparse-View CT Using Normal-Dose Image Induced Total Variation Prior

X-ray computed tomography (CT) iterative image reconstruction from sparse-view projection data has been an important research topic for radiation reduction in clinic. In this paper, to relieve the requirement of misalignment reduction operation of the prior image constrained compressed sensing (PICCS) approach introduced by Chen et al, we present an iterative image reconstruction approach for s...

متن کامل

NUFFT-Based Iterative Image Reconstruction via Alternating Direction Total Variation Minimization for Sparse-View CT

Sparse-view imaging is a promising scanning method which can reduce the radiation dose in X-ray computed tomography (CT). Reconstruction algorithm for sparse-view imaging system is of significant importance. The adoption of the spatial iterative algorithm for CT image reconstruction has a low operation efficiency and high computation requirement. A novel Fourier-based iterative reconstruction t...

متن کامل

Application of incremental algorithms to CT image reconstruction for sparse-view, noisy data

This conference contribution adapts an incremental framework for solving optimization problems of interest for sparse-view CT. From the incremental framework two algorithms are derived: one that combines a damped form of the algebraic reconstruction technique (ART) with a total-variation (TV) projection, and one that employs a modified damped ART, accounting for a weighted-quadratic data fideli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Medical Imaging

سال: 2021

ISSN: ['0278-0062', '1558-254X']

DOI: https://doi.org/10.1109/tmi.2020.3033541