Metric Mean Dimension and Analog Compression
نویسندگان
چکیده
منابع مشابه
The metric dimension and girth of graphs
A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...
متن کاملFrom rate distortion theory to metric mean dimension: variational principle
The purpose of this paper is to point out a new connection between information theory and dynamical systems. In the information theory side, we consider rate distortion theory, which studies lossy data compression of stochastic processes under distortion constraints. In the dynamical systems side, we consider mean dimension theory, which studies how many parameters per second we need to describ...
متن کاملRényi information dimension: fundamental limits of almost lossless analog compression
In Shannon theory, lossless source coding deals with the optimal compression of discrete sources. Compressed sensing is a lossless coding strategy for analog sources by means of multiplication by real-valued matrices. In this paper we study almost lossless analog compression for analog memoryless sources in an information-theoretic framework, in which the compressor or decompressor is constrain...
متن کاملthe metric dimension and girth of graphs
a set $wsubseteq v(g)$ is called a resolving set for $g$, if for each two distinct vertices $u,vin v(g)$ there exists $win w$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. the minimum cardinality of a resolving set for $g$ is called the metric dimension of $g$, and denoted by $dim(g)$. in this paper, it is proved that in a connected graph $...
متن کاملNote on Metric Dimension
The metric dimension of a compact metric space is defined here as the order of growth of the exponential metric entropy of the space. The metric dimension depends on the metric, but is always bounded below by the topological dimension. Moreover, there is always an equivalent metric in which the metric and topological dimensions agree. This result may be used to define the topological dimension ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2020
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2020.2992388