Microengineered synthetic cellular microenvironment for stem cells
نویسندگان
چکیده
منابع مشابه
Microengineered synthetic cellular microenvironment for stem cells.
Stem cells possess the ability of self-renewal and differentiation into specific cell types. Therefore, stem cells have great potentials in fundamental biology studies and clinical applications. The most urgent desire for stem cell research is to generate appropriate artificial stem cell culture system, which can mimic the dynamic complexity and precise regulation of the in vivo biochemical and...
متن کاملSynthetic Extracellular Microenvironment for Modulating Stem Cell Behaviors
The innate ability of stem cells to self-renew and differentiate into multiple cell types makes them a promising source for tissue engineering and regenerative medicine applications. Their capacity for self-renewal and differentiation is largely influenced by the combination of physical, chemical, and biological signals found in the stem cell niche, both temporally and spatially. Embryonic and ...
متن کاملCalcite Biohybrids as Microenvironment for Stem Cells
A new type of composite 3D biomaterial that provides extracellular cues that govern the differentiation processes of mesenchymal stem cells (MSCs) has been developed. In the present study, we evaluated the chondrogenecity of a biohybrid composed of a calcium carbonate scaffold in its calcite polymorph and hyaluronic acid (HA). The source of the calcite scaffolding is an exoskeleton of a sea bar...
متن کاملCardiogel as an Instructive Microenvironment for in vitro Differentiation of Bone Marrow- Derived Mesenchymal Stem Cells into Cardiomyocytes
Background: Stem cell therapy has been developed as an effective treatment method for the heart failure. Also, extracellular matrix has shown the positive effects in stem cell differentiation and myocardial tissue organization. Cardiogel is a native cardiac extracellular matrix (ECM) derived from cardiac fibroblasts. In the present study the role of cardiogel is examin...
متن کاملMesenchymal stem cells and their microenvironment.
Mesenchymal stem cells (MSC) are multipotent stem cells that hold promise for an expanding list of therapeutic uses, not only due to their ability to differentiate into all connective tissues including bone, fat and cartilage, but additionally due to their trophic and anti-inflammatory effects which contribute to healing and tissue regeneration. Ongoing research is starting to illuminate import...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology
سال: 2012
ISSN: 1939-5116
DOI: 10.1002/wnan.1175