Microfilariae Classification Using Multiple Classifiers for Color and Shape Features
نویسندگان
چکیده
منابع مشابه
Shape Classification with Statistical Classifiers using Morphological Shape Representation Features
This paper compares the performance of four statistical classifiers, namely linear discriminant classifier, quadratic discriminant classifier, k-Nearest Neighborhood classifier, and parzen classifier are considered for recognition of 2D-shapes. The two features from morphological skeletons and four features from morphological shape decomposition are identified from 2D-shapes. These features are...
متن کاملLeaf Classification Using Shape, Color, and Texture Features
Several methods to identify plants have been proposed by several researchers. Commonly, the methods did not capture color information, because color was not recognized as an important aspect to the identification. In this research, shape and vein, color, and texture features were incorporated to classify a leaf. In this case, a neural network called Probabilistic Neural network (PNN) was used a...
متن کاملQuestion Classification using Multiple Classifiers
The Open-domain Question Answering system (QA) has been attached great attention for its capacity of providing compact and precise results for sers. The question classification is an essential part in the system, affecting the accuracy of it. The paper studies question classification through machine learning approaches, namely, different classifiers and multiple classifier combination method. B...
متن کاملIncomplete Queries Using Color and Shape Features
Content based image retrieval (CBIR) is the task of searching digital images from a large database based on the extraction of features, such as color, texture and shape of the image. Most of the research in CBIR has been carried out with complete queries which were present in the database. This paper investigates utility of CBIR techniques for retrieval of incomplete and distorted queries. Stud...
متن کاملUsing holistic features for scene classification by combining classifiers
Scene classification is a useful, yet challenging problem in computer vision. Two important tasks for scene classification are the image representation and the choice of the classifier used for decision making. This paper proposes a new technique for scene classification using combined classifiers method. We run two classifiers based on different features: GistCMCT and spatial MCT and combine t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Engineering
سال: 2016
ISSN: 2391-5439
DOI: 10.1515/eng-2016-0079