Microfluidic iterative mechanical characteristics (iMECH) analyzer for single-cell metastatic identification
نویسندگان
چکیده
منابع مشابه
Microfluidic device for single-cell analysis.
We have developed a novel microfluidic device constructed from poly(dimethylsiloxane) using multilayer soft lithography technology for the analysis of single cells. The microfluidic network enables the passive and gentle separation of a single cell from the bulk cell suspension, and integrated valves and pumps enable the precise delivery of nanoliter volumes of reagents to that cell. Various ap...
متن کاملMicrofluidic device for mechanical dissociation of cancer cell aggregates into single cells.
Tumors tissues house a diverse array of cell types, requiring powerful cell-based analysis methods to characterize cellular heterogeneity and identify rare cells. Tumor tissue is dissociated into single cells by treatment with proteolytic enzymes, followed by mechanical disruption using vortexing or pipetting. These procedures can be incomplete and require significant time, and the latter mecha...
متن کاملClassification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.
This paper presents a microfluidic system for cell type classification using mechanical and electrical measurements on single cells. Cells are aspirated continuously through a constriction channel with cell elongations and impedance profiles measured simultaneously. The cell transit time through the constriction channel and the impedance amplitude ratio are quantified as cell's mechanical and e...
متن کاملMicrofluidic based single cell microinjection.
We report a microfluidic based approach for single cell microinjection in which fluid streams direct a cell onto a fixed microneedle in contrast to moving a microneedle towards an immobilized cell, as done in conventional methods. The approach simplifies microinjection and offers the potential for flow through automated microinjection of cells.
متن کاملMicrofluidic cell electroporation using a mechanical valve.
A microfluidic electroporation technique is demonstrated based on the operation of an elastomeric valve in a poly(dimethylsiloxane) (PDMS) fabricated microchip and a common dc power supply. The pulse needed for permeabilization of the cell membrane is generated by temporarily interrupting the circuit using the valve. The electropermeabilization of suspended and adherent Chinese hamster ovary ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analytical Methods
سال: 2017
ISSN: 1759-9660,1759-9679
DOI: 10.1039/c6ay03342c