Minimal length elements of extended affine Weyl groups
نویسندگان
چکیده
منابع مشابه
Extended affine Weyl groups and Frobenius manifolds
We define certain extensions of affine Weyl groups (distinct from these considered by K. Saito [S1] in the theory of extended affine root systems), prove an analogue of Chevalley theorem for their invariants, and construct a Frobenius structure on their orbit spaces. This produces solutions F (t1, . . . , tn) of WDVV equations of associativity polynomial in t1, . . . , tn−1, exp tn.
متن کاملFully Commutative Elements in the Weyl and Affine Weyl Groups
Let W be a Weyl or affine Weyl group and let Wc be the set of fully commutative elements in W . We associate each w ∈ Wc to a digraph G(w). By using G(w), we give a graph-theoretic description for Lusztig’s a-function on Wc and describe explicitly all the distinguished involutions of W . The results verify two conjectures in our case: one was proposed by myself in [15, Conjecture 8.10] and the ...
متن کاملMinimal Length Elements in Some Double Cosets of Coxeter Groups
We study the minimal length elements in some double cosets of Coxeter groups and use them to study Lusztig’s G-stable pieces and the generalization of G-stable pieces introduced by Lu and Yakimov. We also use them to study the minimal length elements in a conjugacy class of a finite Coxeter group and prove a conjecture in [GKP].
متن کاملExcedances in classical and affine Weyl groups
Based on the notion of colored and absolute excedances introduced by Bagno and Garber we give an analogue of the derangement polynomials. We obtain some basic properties of these polynomials. Moreover, we define an excedance statistic for the affine Weyl groups of type B̃n, C̃n and D̃n and determine the generating functions of their distributions. This paper is inspired by one of Clark and Ehrenbo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Compositio Mathematica
سال: 2014
ISSN: 0010-437X,1570-5846
DOI: 10.1112/s0010437x14007349