Minimally ramified deformations when

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When Shape Matters: Deformations of Tiling Spaces

We investigate the dynamics of tiling dynamical systems and their deformations. If two tiling systems have identical combinatorics, then the tiling spaces are homeomorphic, but their dynamical properties may differ. There is a natural map I from the parameter space of possible shapes of tiles to H of a model tiling space, with values in R. Two tiling spaces that have the same image under I are ...

متن کامل

Ramified Frege Arithmetic

Frege’s definitions of zero, predecession, and natural number will be explained below. As for second-order Dedekind-Peano arithmetic, the axiomatization most convenient for our purposes is the following: (1) N0 (2) Nx∧Pxy→ Ny (3) ∀x∀y∀z(Nx∧Pxy∧Pxz→ y = z) (4) ∀x∀y∀z(Nx∧Ny∧Pxz∧Pyz→ x = y) (5) ¬∃x(Nx∧Px0) (6) ∀x(Nx→∃y(Pxy)) (7) ∀F(F0∧∀x∀y(Nx∧Fx∧Pxy→ Fy)→∀x(Nx→ Fx) If (slightly non-standardly) we ...

متن کامل

Discriminants and Ramified Primes

has some ei greater than 1. If every ei equals 1, we say p is unramified in K. Example 1.1. In Z[i], the only prime which ramifies is 2: (2) = (1 + i)2. Example 1.2. Let K = Q(α) where α is a root of f(X) = T 3 − 9T − 6. Then 6 = α3 − 9α = α(α− 3)(α+ 3). For m ∈ Z, α+m has minimal polynomial f(T −m) in Q[T ], so NK/Q(α+m) = −f(−m) = m3 − 9m+ 6 and the principal ideal (α−m) has norm N(α−m) = |m ...

متن کامل

Finitely Ramified Iterated Extensions

Let p be a prime number, K a number field, and S a finite set of places of K. Let KS be the compositum of all extensions of K (in a fixed algebraic closure K) which are unramified outside S, and put GK,S = Gal(KS/K) for its Galois group. These arithmetic fundamental groups play a very important role in number theory. Algebraic geometry provides the most fruitful known source of information conc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2018

ISSN: 0010-437X,1570-5846

DOI: 10.1112/s0010437x18007546