Minimum risk probability for finite horizon semi-Markov decision processes
نویسندگان
چکیده
منابع مشابه
Finite-horizon variance penalised Markov decision processes
We consider a finite horizon Markov decision process with only terminal rewards. We describe a finite algorithm for computing a Markov deterministic policy which maximises the variance penalised reward and we outline a vertex elimination algorithm which can reduce the computation involved.
متن کاملLagrange Dual Decomposition for Finite Horizon Markov Decision Processes
Solving finite-horizon Markov Decision Processes with stationary policies is a computationally difficult problem. Our dynamic dual decomposition approach uses Lagrange duality to decouple this hard problem into a sequence of tractable sub-problems. The resulting procedure is a straightforward modification of standard non-stationary Markov Decision Process solvers and gives an upper-bound on the...
متن کاملSimulation-Based Optimization Algorithms for Finite-Horizon Markov Decision Processes
We develop four simulation-based algorithms for finite-horizon Markov decision processes. Two of these algorithms are developed for finite state and compact action spaces while the other two are for finite state and finite action spaces. Of the former two, one algorithm uses a linear parameterization for the policy, resulting in reduced memory complexity. Convergence analysis is briefly sketche...
متن کاملFinite-Horizon Markov Decision Processes with Sequentially-Observed Transitions
Markov Decision Processes (MDPs) have been used to formulate many decision-making problems in science and engineering. The objective is to synthesize the best decision (action selection) policies to maximize expected rewards (or minimize costs) in a given stochastic dynamical environment. In this paper, we extend this model by incorporating additional information that the transitions due to act...
متن کاملFinite-Horizon Markov Decision Processes with State Constraints
Markov Decision Processes (MDPs) have been used to formulate many decision-making problems in science and engineering. The objective is to synthesize the best decision (action selection) policies to maximize expected rewards (minimize costs) in a given stochastic dynamical environment. In many practical scenarios (multi-agent systems, telecommunication, queuing, etc.), the decision-making probl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2013
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2013.01.021