Mining and visualising contradictory data
نویسندگان
چکیده
منابع مشابه
Visualising and Mining Digital Bibliographic Data
Finding related publications and their correct bibliographical data is getting harder and harder due to the mass of unrequested information and the decreasing precision of many information providers. The DBLP Computer Science Bibliography is a service used by thousands of computer scientists which provides fundamental support for scientists searching for publications or other scientists in simi...
متن کاملMining and visualising ordinal data with non-parametric continuous BBNs
Data mining is the process of extracting and analysing information from large databases. Graphical models are a suitable framework for probabilistic modelling. A Bayesian Belief Net(BBN) is a probabilistic graphical model, which represents joint distributions in an intuitive and efficient way. It encodes the probability density (or mass) function of a set of variables by specifying a number of ...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
data mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولVisualising and Clustering Video Data
We review a new form of self-organizing map which is based on a nonlinear projection of latent points into data space, identical to that performed in the Generative Topographic Mapping (GTM) [1]. But whereas the GTM is an extension of a mixture of experts, this model is an extension of a product of experts [6]. We show visualisation and clustering results on a data set composed of video data of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Big Data
سال: 2017
ISSN: 2196-1115
DOI: 10.1186/s40537-017-0100-9