Missing data in cross-sectional networks – An extensive comparison of missing data treatment methods
نویسندگان
چکیده
منابع مشابه
DEA with Missing Data: An Interval Data Assignment Approach
In the classical data envelopment analysis (DEA) models, inputs and outputs are assumed as known variables, and these models cannot deal with unknown amounts of variables directly. In recent years, there are few researches on handling missing data. This paper suggests a new interval based approach to apply missing data, which is the modified version of Kousmanen (2009) approach. First, the prop...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملPerformance evaluation of different estimation methods for missing rainfall data
There are numerous methods to estimate missing values of which some are used depending on the data type and regional climatic characteristics. In this research, part of the monthly precipitation data in Sarab synoptic station, east Azerbaijan province, Iran was randomly considered missing values. In order to study the effectiveness of various methods to estimate missing data, by seven classic s...
متن کاملA Review of Missing Data Treatment Methods
Missing data is a common problem for data quality. Most real datasets have missing data. This paper analyzes the missing data mechanisms and treatment rules. Popular and conventional missing data treatment methods are introduced and compared. Suitable environments for method are analyzed in experiments. Methods are classified into certain categories according to different characters.
متن کاملdea with missing data: an interval data assignment approach
in the classical data envelopment analysis (dea) models, inputs and outputs are assumed as known variables, and these models cannot deal with unknown amounts of variables directly. in recent years, there are few researches on handling missing data. this paper suggests a new interval based approach to apply missing data, which is the modified version of kousmanen (2009) approach. first, the prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Social Networks
سال: 2020
ISSN: 0378-8733
DOI: 10.1016/j.socnet.2020.02.004