Mixed boundary value problems for the Stokes system
نویسندگان
چکیده
منابع مشابه
Boundary Value Problems and Optimal Boundary Control for the Navier–stokes System: the Two-dimensional Case∗
We study optimal boundary control problems for the two-dimensional Navier–Stokes equations in an unbounded domain. Control is effected through the Dirichlet boundary condition and is sought in a subset of the trace space of velocity fields with minimal regularity satisfying the energy estimates. An objective of interest is the drag functional. We first establish three important results for inho...
متن کاملL2-transforms for boundary value problems
In this article, we will show the complex inversion formula for the inversion of the L2-transform and also some applications of the L2, and Post Widder transforms for solving singular integral equation with trigonometric kernel. Finally, we obtained analytic solution for a partial differential equation with non-constant coefficients.
متن کاملStrong Singularities in Mixed Boundary Value Problems
where [0, T ] ⊂ . We assume that D ⊂ 2 , f satisfies the Carathéodory conditions on (0, T ) × D , p ∈ C[0, T ] and 1/p need not be integrable on [0, T ]. Here f can have time singularities at t = 0 and/or t = T and a space singularity at x = 0. Moreover, f can change its sign. Provided f is nonnegative it can have even a space singularity at y = 0. We present conditions for the existence of sol...
متن کاملB-Spline Finite Element Method for Solving Linear System of Second-Order Boundary Value Problems
In this paper, we solve a linear system of second-order boundary value problems by using the quadratic B-spline nite el- ement method (FEM). The performance of the method is tested on one model problem. Comparisons are made with both the analyti- cal solution and some recent results.The obtained numerical results show that the method is ecient.
متن کاملEquidistribution grids for two-parameter convection–diffusion boundary-value problems
In this article, we propose an adaptive grid based on mesh equidistribution principle for two-parameter convection-diffusion boundary value problems with continuous and discontinuous data. A numerical algorithm based on an upwind finite difference operator and an appropriate adaptive grid is constructed. Truncation errors are derived for both continuous and discontinuous problems. Parameter uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2009
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-09-04774-6