Mixtures and products in two graphical models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Mixtures of Tree Graphical Models

We consider unsupervised estimation of mixtures of discrete graphical models, where the class variable is hidden and each mixture component can have a potentially different Markov graph structure and parameters over the observed variables. We propose a novel method for estimating the mixture components with provable guarantees. Our output is a tree-mixture model which serves as a good approxima...

متن کامل

Learning High-Dimensional Mixtures of Graphical Models

We consider unsupervised estimation of mixtures of discrete graphical models, where the class variable corresponding to the mixture components is hidden and each mixture component over the observed variables can have a potentially different Markov graph structure and parameters. We propose a novel approach for estimating the mixture components, and our output is a tree-mixture model which serve...

متن کامل

Computationally Efficient Methods for Selecting Among Mixtures of Graphical Models

We describe computationally efficient methods for Bayesian model selection. The methods select among mixtures in which each component is a directed acyclic graphical model (mixtures of DAGs or MDAGs), and can be applied to data sets in which some of the random variables are not always observed. The model-selection criterion that we consider is the posterior probability of the model (structure) ...

متن کامل

Hyperbolic Models of Homogeneous Two-Fluid Mixtures

Abstract. One derives the governing equations and the Rankine Hugoniot conditions for a mixture of two miscible fluids using an extended form of Hamilton’s principle of least action. The Lagrangian is constructed as the difference between the kinetic energy and a potential depending on the relative velocity of components. To obtain the governing equations and the jump conditions one uses two re...

متن کامل

Appendix to “ Bayesian Mixtures of Autoregressive Models ” published in the Journal of Computational and Graphical Statistics

j=1 |X ′ pZjXp + c−1X ′ pXp|b −aj j , where Zj = diag(ztjpr, t = P + 1, . . . , n). Note that ztjpr takes on the same value (zero or one) for all t ∈ {1 + (s − 1)L, . . . , sL}. The expressions for aj and bj are aj = 1 2 ∑n t=P+1 zjtpr + α and bj = 1 2 yMjy ∗ + β, where Mj = Zj − ZjXp(X ′ pZjXp + c−1X ′ pXp) −1X ′ pZj. 3. Let psjpr = sL ∏ t=1+(s−1)L p(yt|xt−1;φjpr, σ jpr). Draw the indicators f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Statistics

سال: 2018

ISSN: 1309-3452

DOI: 10.18409/jas.v9i1.90