Modeling of lithium granule injection in NSTX with M3D-C1
نویسندگان
چکیده
منابع مشابه
Modeling of plasma/lithium-surface interactions in NSTX: Status and key issues
We are studying lithium sputtering, evaporation, transport, material mixing, and surface evolution for the National Spherical Torus Experiment (NSTX) for various surfaces and plasma conditions. Lithium modeling is complex, particularly for NSTX short pulse, multiple material, variable plasma conditions. Cases examined include: (1) liquid lithium divertor (LLD) with planned high heating power/lo...
متن کاملSimulations of diffusive lithium evaporation onto the NSTX vessel walls
A model for simulating the diffusive evaporation of lithium into a helium filled NSTX vacuum vessel is described and validated against an initial set of deposition experiments. The DEGAS 2 based model consists of a three-dimensional representation of the vacuum vessel, the elastic scattering process, and a kinetic description of the evaporated atoms. Additional assumptions are required to accou...
متن کاملPlasma Performance Improvement with Lithium-Coated Plasma-Facing Components in NSTX*
Lithium as a plasma-facing material has many attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Recent NSTX experiments have shown, for the first time, significant and recurring benefits of lithium coatings on plasma-facing components (PFC’s) to the performance of divertor plasmas ...
متن کاملLithium Pellet Injection Experiments
A pellet enhanced performance (PEP) mode, showing significantly reduced core transport, is regularly obtained after the injection of deeply penetrating lithium pellets into Alcator C-Mod discharges. These transient modes, which typically persist about two energy confinement times, are characterized by a steep pressure gradient (4, <a/5) in the inner third of the plasma, indicating the presence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Materials and Energy
سال: 2017
ISSN: 2352-1791
DOI: 10.1016/j.nme.2017.02.019