MODELING UNKNOWN DYNAMICAL SYSTEMS WITH HIDDEN PARAMETERS
نویسندگان
چکیده
We present a data-driven numerical approach for modeling unknown dynamical systems with missing/hidden parameters. The method is based on training deep neural network (DNN) model the system using its trajectory data. A key feature that contains parameters are completely hidden, in sense no information about available through either measurement data or our prior knowledge of system. demonstrate by DNN sufficient time history, resulting can accurately For new initial conditions associated new, and unknown, parameters, produce accurate predictions over longer time.
منابع مشابه
observational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولjordan c-dynamical systems
in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...
15 صفحه اولHidden oscillations in dynamical systems
The classical attractors of Lorenz, Rossler, Chua, Chen, and other widely-known attractors are those excited from unstable equilibria. From computational point of view this allows one to use numerical method, in which after transient process a trajectory, started from a point of unstable manifold in the neighborhood of equilibrium, reaches an attractor and identifies it. However there are attra...
متن کاملModeling Chaotic Systems with Hidden Markov Models
The problem of modeling chaotic nonlinear dynamical systems using hidden Markov models is considered. A hidden Markov model for a class of chaotic systems is developed from noise-free observations of the output of that system. A combination of vector quantization and the Baum-Welch algorithm is used for training. The importance of this combined iterative approach is demonstrated. The model is t...
متن کاملa new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot
abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of machine learning for modeling and computing
سال: 2022
ISSN: ['2689-3967', '2689-3975']
DOI: https://doi.org/10.1615/jmachlearnmodelcomput.2022041026