Modelling fundamental 2-categories for directed homotopy

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling fundamental 2-categories for directed homotopy (*)

Directed Algebraic Topology is a recent field, deeply linked with ordinary and higher dimensional Category Theory. A 'directed space', e.g. an ordered topological space, has directed homotopies (generally non reversible) and fundamental n-categories (replacing the fundamental ngroupoids of the classical case). Finding a simple model of the latter is a non-trivial problem, whose solution gives r...

متن کامل

Homotopy Limits for 2-categories

We study homotopy limits for 2-categories using the theory of Quillen model categories. In order to do so, we establish the existence of projective and injective model structures on diagram 2categories. Using these results, we describe the homotopical behaviour not only of conical limits but also of weighted limits. Finally, pseudo-limits are related to homotopy limits. 1. Quillen model structu...

متن کامل

Stable Homotopy Categories

Introduction. The Freudenthal suspension theorem implies that the set of homotopy classes of continuous maps from one finite complex to another is eventually invariant under iterated suspension of the complexes. In this "stable range" the set of homotopy classes is also well behaved in other ways. For example, it has in a natural way the structure of an abelian group. These stable groups of hom...

متن کامل

Sheafifiable Homotopy Model Categories

If a Quillen model category can be specified using a certain logical syntax (intuitively, “is algebraic/combinatorial enough”), so that it can be defined in any category of sheaves, then the satisfaction of Quillen’s axioms over any site is a purely formal consequence of their being satisfied over the category of sets. Such data give rise to a functor from the category of topoi and geometric mo...

متن کامل

Model Structures for Homotopy of Internal Categories

The aim of this paper is to describe Quillen model category structures on the category CatC of internal categories and functors in a given finitely complete category C. Several non-equivalent notions of internal equivalence exist; to capture these notions, the model structures are defined relative to a given Grothendieck topology on C. Under mild conditions on C, the regular epimorphism topolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Homology, Homotopy and Applications

سال: 2006

ISSN: 1532-0073,1532-0081

DOI: 10.4310/hha.2006.v8.n1.a2