Molecular Dynamics Simulations of the Lipid Bilayer Edge
نویسندگان
چکیده
منابع مشابه
Molecular dynamics simulations of the lipid bilayer edge.
Phospholipid bilayers have been intensively studied by molecular dynamics (MD) simulation in recent years. The properties of bilayer edges are important in determining the structure and stability of pores formed in vesicles and biomembranes. In this work, we use molecular dynamics simulation to investigate the structure, dynamics, and line tension of the edges of bilayer ribbons composed of pur...
متن کاملMolecular Dynamics Simulations of the Interaction of Beta Cyclodextrin with a Lipid Bilayer
Beta cyclodextrin (βCD) is well-known as a potent drug carrier improving drug solubility, stability, and bioavailability. The water layer adjacent to the membrane surface and lipophilic domain itself are a controlling barrier for drug transport. However, the molecular details of the interaction between βCD and the lipid membrane has not yet been clearly explained. Here, molecular dynamics simul...
متن کاملExploring the Effects on Lipid Bilayer Induced by Noble Gases via Molecular Dynamics Simulations
Noble gases seem to have no significant effect on the anesthetic targets due to their simple, spherical shape. However, xenon has strong narcotic efficacy and can be used clinically, while other noble gases cannot. The mechanism remains unclear. Here, we performed molecular dynamics simulations on phospholipid bilayers with four kinds of noble gases to elucidate the difference of their effects ...
متن کاملMolecular dynamics simulations of depth distribution of spin-labeled phospholipids within lipid bilayer.
Spin-labeled lipids are commonly used as fluorescence quenchers in studies of membrane penetration of dye-labeled proteins and peptides using depth-dependent quenching. Accurate calculations of depth of the fluorophore rely on the use of several spin labels placed in the membrane at various positions. The depth of the quenchers (spin probes) has to be determined independently; however, experime...
متن کاملMolecular dynamics simulations and NMR spectroscopy studies of trehalose-lipid bilayer systems.
The disaccharide trehalose (TRH) strongly affects the physical properties of lipid bilayers. We investigate interactions between lipid membranes formed by 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and TRH using NMR spectroscopy and molecular dynamics (MD) computer simulations. We compare dipolar couplings derived from DMPC/TRH trajectories with those determined (i) experimentally in TR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2004
ISSN: 0006-3495
DOI: 10.1529/biophysj.103.031054