Molecular learning with DNA kernel machines
نویسندگان
چکیده
منابع مشابه
Molecular learning with DNA kernel machines
We present a computational learning method for bio-molecular classification. This method shows how to design biochemical operations both for learning and pattern classification. As opposed to prior work, our molecular algorithm learns generic classes considering the realization in vitro via a sequence of molecular biological operations on sets of DNA examples. Specifically, hybridization betwee...
متن کاملKernel machines with two layers and multiple kernel learning
In this paper, the framework of kernel machines with two layers is introduced, generalizing classical kernel methods. The new learning methodology provide a formal connection between computational architectures with multiple layers and the theme of kernel learning in standard regularization methods. First, a representer theorem for two-layer networks is presented, showing that finite linear com...
متن کاملFrom Kernel Machines to Ensemble Learning
Ensemble methods such as boosting combine multiple learners to obtain better prediction than could be obtained from any individual learner. Here we propose a principled framework for directly constructing ensemble learning methods from kernel methods. Unlike previous studies showing the equivalence between boosting and support vector machines (SVMs), which needs a translation procedure, we show...
متن کاملDistance Metric Learning for Kernel Machines
Recent work in metric learning has significantly improved the state-of-the-art in k-nearest neighbor classification. Support vector machines (SVM), particularly with RBF kernels, are amongst the most popular classification algorithms that uses distance metrics to compare examples. This paper provides an empirical analysis of the efficacy of three of the most popular Mahalanobis metric learning ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biosystems
سال: 2015
ISSN: 0303-2647
DOI: 10.1016/j.biosystems.2015.06.007