Monochromatic balanced components, matchings, and paths in multicolored complete bipartite graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monochromatic Vs multicolored paths

Let l and k be positive integers, and let X = {0, 1, . . . , l}. Is it true that for every coloring δ : X × X → {0, 1, . . .} there either exist elements x0 < x1 < . . . < xl of X with δ(x0, x1) = δ(x1, x2) = . . . = δ(xl−1, xl), or else there exist elements y0 < y1 < . . . < yk of X with δ(yi−1, yi) 6= δ(yj−1, yj) for all 1 ≤ i < j ≤ k? We prove here that this is the case if either l ≤ 2, or k...

متن کامل

Local colourings and monochromatic partitions in complete bipartite graphs

We show that for any 2-local colouring of the edges of a complete bipartite graph, its vertices can be covered with at most 3 disjoint monochromatic paths. And, we can cover almost all vertices of any complete or complete bipartite r-locally coloured graph with O(r) disjoint monochromatic cycles. MSC: 05C38, 05C55.

متن کامل

Alternating paths revisited II: restricted b-matchings in bipartite graphs

We give a constructive proof for a min-max relation on restricted b-matchings in bipartite graphs, extending results of Hartvigsen [5, 6], Király [7], and Frank [3]. Restricted b-matching is a special case of covering pairs of sets, for which Benczúr and Végh [1, 2] constructed a polynomial time algorithm – this implies a polynomial time algorithm for restricted b-matchings, as well. In this pa...

متن کامل

Complete Bipartite Graphs with No Rainbow Paths

Motivated by questions in Ramsey theory, Thomason and Wagner described the edge colorings of complete graphs that contain no rainbow path Pt of order t. In this paper, we consider the edge colorings of complete bipartite graphs that contain no rainbow path Pt. Mathematics Subject Classification: 05C15, 05C38, 05C55

متن کامل

Independent cycles and paths in bipartite balanced graphs

Bipartite graphs G = (L, R; E) and H = (L, R; E) are bi-placeabe if there is a bijection f : L ∪ R → L ∪ R such that f(L) = L and f(u)f(v) / ∈ E for every edge uv ∈ E. We prove that if G and H are two bipartite balanced graphs of order |G| = |H | = 2p ≥ 4 such that the sizes of G and H satisfy ‖ G ‖≤ 2p− 3 and ‖ H ‖≤ 2p− 2, and the maximum degree of H is at most 2, then G and H are bi-placeable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorics

سال: 2020

ISSN: 2156-3527,2150-959X

DOI: 10.4310/joc.2020.v11.n1.a2