Monodromy groups for higher-order differential equations
نویسندگان
چکیده
منابع مشابه
Semipositone higher-order differential equations
Krasnoselskii’s fixed-point theorem in a cone is used to discuss the existence of positive solutions to semipositone conjugate and (n, p) problems. @ 2004 Elsevier Ltd. All rights reserved. Keywords-Existence, Positive solution, Semipositone, Conjugate and (n,p) problems.
متن کاملRenormalization methods for higher order differential equations
We adapt methodology of statistical mechanics and quantum field theory to approximate solutions to an arbitrary order ordinary differential equation boundary value problem by a second-order equation. In particular, we study equations involving the derivative of a double-well potential such as u− u3 or − u + 2u3. Using momentum (Fourier) space variables we average over short length scales and de...
متن کاملDiscrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients
This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...
متن کاملPainlevé Test and Higher Order Differential Equations
Starting from the second Painlevé equation, we obtain Painlevé type equations of higher order by using the singular point analysis.
متن کاملHIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS II: Nonhomogeneous Equations
Because the presentation of this material in class will differ from that in the book, I felt that notes that closely follow the class presentation might be appreciated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1975
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1975-13748-7