MORITA CONTEXT FOR WEAK DOI-KOPPINEN SMASH PRODUCTS AND ITS APPLICATIONS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doi-koppinen Modules for Quantum Groupoids

A definition of a Doi-Koppinen datum over a noncommutative algebra is proposed. The idea is to replace a bialgebra in a standard Doi-Koppinen datum with a bialgebroid. The corresponding category of Doi-Koppinen modules over a noncommutative algebra is introduced. A weak Doi-Koppinen datum and module of [1] are shown to be examples of a Doi-Koppinen datum and module over an algebra. A coring ass...

متن کامل

Doi-Koppinen Hopf Modules Versus Entwined Modules

A Hopf module is an A-module for an algebra A as well as a C-comodule for a coalgebra C, satisfying a suitable compatibility condition between the module and comodule structures. To formulate the compatibility condition one needs some kind of interaction between A and C. The most classical case arises when A = C =: H is a bialgebra. Many subsequent variants of this were unified independently by...

متن کامل

Operadic Tensor Products and Smash Products

Let k be a commutative ring. E∞ k-algebras are associative and commutative k-algebras up to homotopy, as codified in the action of an E∞ operad; A∞ k-algebras are obtained by ignoring permutations. Using a particularly well-behaved E∞ algebra, we explain an associative and commutative operadic tensor product that effectively hides the operad: an A∞ algebra or E∞ algebra A is defined in terms of...

متن کامل

Smash Products for Secondary Homotopy Groups

We construct a smash product operation on secondary homotopy groups yielding the structure of a lax symmetric monoidal functor. Applications on cup-one products, Toda brackets and Whitehead products are considered.

متن کامل

Morita equivalence based on Morita context for arbitrary semigroups

In this paper, we study the Morita context for arbitrary semigroups. We prove that, for two semigroups S and T, if there exists a Morita context (S, T, P,Q, τ, μ) (not necessary unital) such that the maps τ and μ are surjective, the categories US-FAct and UT -FAct are equivalent. Using this result, we generalize Theorem 2 in [2] to arbitrary semigroups. Finally, we give a characterization of Mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Electronic Journal of Algebra

سال: 2016

ISSN: 1306-6048

DOI: 10.24330/ieja.266189