Morita Equivalence of Formal Poisson Structures
نویسندگان
چکیده
Abstract We extend the notion of Morita equivalence Poisson manifolds to setting formal structures, that is, power series bivector fields $\pi =\pi _0 + \lambda \pi _1 +\cdots $ satisfying integrability condition $[\pi ,\pi ]=0$. Our main result gives a complete description equivalent structures deforming zero structure ($\pi _0=0$) in terms $B$-field transformations, relying on general study deformations morphisms and dual pairs. Combined with previous work star products [ 5], our results link notions geometry noncommutative algebra via deformation quantization.
منابع مشابه
Poisson geometry and Morita equivalence
2 Poisson geometry and some generalizations 3 2.1 Poisson manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Dirac structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Twisted structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Symplectic leaves and local structure of Poisson manifolds ...
متن کاملQuantization and Morita Equivalence for Constant Dirac Structures on Tori
We define a C∗-algebraic quantization of constant Dirac structures on tori, which extends the standard quantization of Poisson structures. We prove that Dirac structures in the same orbit of a natural action of O(n, n|Z) give rise to Morita equivalent algebras, completing and extending a theorem of Rieffel and Schwarz.
متن کاملNoncommutative fermions and Morita equivalence
We study the Morita equivalence for fermion theories on noncommutative two-tori. For rational values of the θ parameter (in appropriate units) we show the equivalence between an abelian noncommutative fermion theory and a nonabelian theory of twisted fermions on ordinary space. We study the chiral anomaly and compute the determinant of the Dirac operator in the dual theories showing that the Mo...
متن کاملMomentum Maps and Morita Equivalence
We introduce quasi-symplectic groupoids and explain their relation with momentum map theories. This approach enables us to unify into a single framework various momentum map theories, including ordinary Hamiltonian G-spaces, Lu’s momentum maps of Poisson group actions, and the group-valued momentum maps of Alekseev–Malkin–Meinrenken. More precisely, we carry out the following program: (1) We de...
متن کاملCategorical Quasivarieties via Morita Equivalence
We give a new proof of the classification of א0-categorical quasivarieties by using Morita equivalence to reduce to term minimal quasivarieties.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2021
ISSN: ['1687-0247', '1073-7928']
DOI: https://doi.org/10.1093/imrn/rnab096