Motivic invariants of real polynomial functions and their Newton polyhedrons

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motivic construction of cohomological invariants

The norm varieties and the varieties with special correspondences play a major role in the proof of the Bloch-Kato Conjecture by M. Rost and V. Voevodsky. In the present paper we show that a variety which possesses a special correspondence is a norm variety. As an unexpected application we give a positive answer to a problem of J.-P. Serre about groups of type E8 over Q. Apart from this we incl...

متن کامل

Motivic Invariants of Algebraic Tori

We prove a trace formula and a global form of Denef and Loeser’s motivic monodromy conjecture for tamely ramified algebraic tori over a discretely valued field. If the torus has purely additive reduction, the trace formula gives a cohomological interpretation for the number of components of the Néron model.

متن کامل

Constructible motivic functions and motivic integration

1.1. In this paper, intended to be the first in a series, we lay new general foundations for motivic integration and give answers to some important issues in the subject. Since its creation by Maxim Kontsevich [23], motivic integration developed quickly and has spread out in many directions. In a nutshell, in motivic integration, numbers are replaced by geometric objects, like virtual varieties...

متن کامل

Arc Spaces, Motivic Integration and Stringy Invariants

The concept of motivic integration was invented by Kontsevich to show that birationally equivalent Calabi-Yau manifolds have the same Hodge numbers. He constructed a certain measure on the arc space of an algebraic variety, the motivic measure, with the subtle and crucial property that it takes values not in R, but in the Grothendieck ring of algebraic varieties. A whole theory on this subject ...

متن کامل

Motivic-type Invariants of Blow-analytic Equivalence

To a given analytic function germ f : (R, 0) → (R, 0), we associate zeta functions Zf,+, Zf,− ∈ Z[[T ]], defined analogously to the motivic zeta functions of Denef and Loeser. We show that our zeta functions are rational and that they are invariants of the blow-analytic equivalence in the sense of Kuo. Then we use them together with the Fukui invariant to classify the blow-analytic equivalence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Proceedings of the Cambridge Philosophical Society

سال: 2015

ISSN: 0305-0041,1469-8064

DOI: 10.1017/s030500411500064x