Multi-component Nonlinear Schrödinger Equations with Nonzero Boundary Conditions: Higher-Order Vector Peregrine Solitons and Asymptotic Estimates

نویسندگان

چکیده

We first report the first- and higher-order vector Peregrine solitons (alias rational rogue waves) for any multi-component NLS equations based on loop group theory, an explicit (n + 1)-multiple eigenvalue of a characteristic polynomial degree 1) related to condition Benjamin-Feir instability, inverse functions. Particularly, these waves are parity-time symmetric some parameter constraints. A systematic effective approach is proposed study asymptotic behaviors such that decompositions so-called governing polynomials, which pave powerful way in wave structures integrable systems. The with maximal amplitudes can be determined via vectors, interesting useful physical

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absorbing boundary conditions for nonlinear Schrödinger equations.

A local time-splitting method (LTSM) is developed to design absorbing boundary conditions for numerical solutions of time-dependent nonlinear Schrödinger equations associated with open boundaries. These boundary conditions are significant for numerical simulations of propagations of nonlinear waves in physical applications, such as nonlinear fiber optics and Bose-Einstein condensations. Numeric...

متن کامل

Higher order multi-point fractional boundary value problems with integral boundary conditions

In this paper, we concerned with positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions. We establish the criteria for the existence of at least one, two and three positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions by using a result from the theory of fixed...

متن کامل

Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations.

We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viabl...

متن کامل

Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations

This paper addresses the construction of nonlinear integro-differential artificial boundary conditions for one-dimensional nonlinear cubic Schrödinger equations. Several ways of designing such conditions are provided and a theoretical classification of their accuracy is given. Semi-discrete time schemes based on the method developed by Durán and Sanz-Serna [IMA J. Numer. Anal. 20 (2) (2000), pp...

متن کامل

Discrete artificial boundary conditions for nonlinear Schrödinger equations

In this work we construct and analyze discrete artificial boundary conditions (ABCs) for different finite difference schemes to solve nonlinear Schrödinger equations. These new discrete boundary conditions are motivated by the continuous ABCs recently obtained by the potential strategy of Szeftel. Since these new nonlinear ABCs are based on the discrete ABCs for the linear problem we first revi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Science

سال: 2021

ISSN: ['0938-8974', '1432-1467']

DOI: https://doi.org/10.1007/s00332-021-09735-z