Multi-Guidance CNNs for Salient Object Detection
نویسندگان
چکیده
Feature refinement and feature fusion are two key steps in convolutional neural networks–based salient object detection (SOD). In this article, we investigate how to utilize multiple guidance mechanisms better refine fuse extracted multi-level features propose a novel multi-guidance SOD model dubbed as MGuid-Net. Since boundary information is beneficial for locating sharpening objects, edge utilized our network together with saliency SOD. Specifically, self-guidance module applied features, respectively, which aims gradually guide the of lower-level by higher-level features. After that, cross-guidance devised mutually via complementarity between them. Moreover, integrate refined also present an accumulative module, exploits high-level different hierarchical manner. Finally, pixelwise contrast loss function adopted implicit help retain more details objects. Extensive experiments on five benchmark datasets demonstrate can identify regions image effectively compared most state-of-the-art models.
منابع مشابه
Adaptive Multi-Level Region Merging for Salient Object Detection
Salient object detection is a long-standing problem in computer vision and plays a critical role in understanding the mechanism of human visual attention. In applications that require object-level prior (e.g. image retargeting), it is desirable that saliency detection highlights holistic objects. Lately over-segmentation techniques such as SLIC superpixel [6], Meanshift [1], and graph-based [3]...
متن کاملMSDNN: Multi-Scale Deep Neural Network for Salient Object Detection
Salient object detection is a fundamental problem and has been received a great deal of attentions in computer vision. Recently deep learning model became a powerful tool for image feature extraction. In this paper, we propose a multi-scale deep neural network (MSDNN) for salient object detection. The proposed model first extracts global high-level features and context information over the whol...
متن کاملWeakly Supervised Learning for Salient Object Detection
Recent advances of supervised salient object detection models demonstrate significant performance on benchmark datasets. Training such models, however, requires expensive pixel-wise annotations of salient objects. Moreover, many existing salient object detection models assume that at least a salient object exists in the input image. Such an impractical assumption leads to less appealing salienc...
متن کاملSalient Object Detection: A Survey
Detecting and segmenting salient objects in natural scenes, also known as salient object detection, has attracted a lot of focused research in computer vision and has resulted in many applications. However, while many such models exist, a deep understanding of achievements and issues is lacking. We aim to provide a comprehensive review of the recent progress in this field. We situate salient ob...
متن کاملSalient Object Detection and Segmentation
Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object extraction algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Multimedia Computing, Communications, and Applications
سال: 2023
ISSN: ['1551-6857', '1551-6865']
DOI: https://doi.org/10.1145/3570507