Multi-label dataless text classification with topic modeling
نویسندگان
چکیده
منابع مشابه
Multi-label Dataless Text Classification with Topic Modeling
Manually labeling documents is tedious and expensive, but it is essential for training a traditional text classifier. In recent years, a few dataless text classification techniques have been proposed to address this problem. However, existing works mainly center on single-label classification problems, that is, each document is restricted to belonging to a single category. In this paper, we pro...
متن کاملTopic Modeling and Classification of Cyberspace Papers Using Text Mining
The global cyberspace networks provide individuals with platforms to can interact, exchange ideas, share information, provide social support, conduct business, create artistic media, play games, engage in political discussions, and many more. The term cyberspace has become a conventional means to describe anything associated with the Internet and the diverse Internet culture. In fact, cyberspac...
متن کاملDataless Text Classification with Descriptive LDA
Manually labeling documents for training a text classifier is expensive and time-consuming. Moreover, a classifier trained on labeled documents may suffer from overfitting and adaptability problems. Dataless text classification (DLTC) has been proposed as a solution to these problems, since it does not require labeled documents. Previous research in DLTC has used explicit semantic analysis of W...
متن کاملOn Dataless Hierarchical Text Classification
In this paper, we systematically study the problem of dataless hierarchical text classification. Unlike standard text classification schemes that rely on supervised training, dataless classification depends on understanding the labels of the sought after categories and requires no labeled data. Given a collection of text documents and a set of labels, we show that understanding the labels can b...
متن کاملMulti Label Text Classification through Label Propagation
Classifying text data has been an active area of research for a long time. Text document is multifaceted object and often inherently ambiguous by nature. Multi-label learning deals with such ambiguous object. Classification of such ambiguous text objects often makes task of classifier difficult while assigning relevant classes to input document. Traditional single label and multi class text cla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge and Information Systems
سال: 2018
ISSN: 0219-1377,0219-3116
DOI: 10.1007/s10115-018-1280-0