Multi-Level Monte Carlo Simulations with Importance Sampling

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Monte Carlo with Importance Sampling Method

Monte Carlo simulation methods apply a random sampling and modifications can be made of this method is by using variance reduction techniques (VRT). VRT objective is to reduce the variance due to Monte Carlo methods become more accurate with a variance approaching zero and the number of samples approaches infinity, which is not practical in the real situation (Chen, 2004). These techniques are ...

متن کامل

Monte Carlo inference via greedy importance sampling

We present a new method for conducting Monte Carlo inference in graphical models which combines explicit search with generalized importance sampling. The idea is to reduce the variance of importance sampling by searching for significant points in the target distribution. We prove that it is possible to introduce search and still maintain unbiasedness. We then demonstrate our procedure on a few ...

متن کامل

Probabilistic Multi Objective Optimal Reactive Power Dispatch Considering Load Uncertainties Using Monte Carlo Simulations

Optimal Reactive Power Dispatch (ORPD) is a multi-variable problem with nonlinear constraints and continuous/discrete decision variables. Due to the stochastic behavior of loads, the ORPD requires a probabilistic mathematical model. In this paper, Monte Carlo Simulation (MCS) is used for modeling of load uncertainties in the ORPD problem. The problem is formulated as a nonlinear constrained mul...

متن کامل

Minimum variance importance sampling via Population Monte Carlo

Variance reduction has always been a central issue in Monte Carlo experiments. Population Monte Carlo can be used to this effect, in that a mixture of importance functions, called a D-kernel, can be iteratively optimised to achieve the minimum asymptotic variance for a function of interest among all possible mixtures. The implementation of this iterative scheme is illustrated for the computatio...

متن کامل

Greedy importance sampling: A new Monte Carlo inference method

This paper presents a new Monte Carlo inference method that is a simple variation of importance sampling. It is well known that importance sampling fails when the proposal distribution concentrates samples in low density regions of the target distribution, which leads to high variance in the estimates. The method we propose attempts to mitigate this difficulty by explicitly searching for high d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2013

ISSN: 1556-5068

DOI: 10.2139/ssrn.2273215