Multi-Model Ensemble Prediction of Summer Precipitation in China Based on Machine Learning Algorithms

نویسندگان

چکیده

The development of machine learning (ML) provides new means and methods for accurate climate analysis prediction. This study focuses on summer precipitation prediction using ML algorithms. Based BCC CSM1.1, ECMWF SEAS5, NCEP CFSv2, JMA CPS2 model data, we conducted a multi-model ensemble (MME) experiment three tree-based algorithms: the decision tree (DT), random forest (RF), adaptive boosting (AB) On this basis, explored applicability algorithms seasonal in China, as well impact different hyperparameters accuracy. Then, MME predictions based optimal were constructed regions China. results showed that all had an maximum depth less than 2, which that, current amount could only predict positive or negative anomalies, extreme was hard to predict. importance each ML-based quantitatively evaluated. CFSv2 higher eastern part Finally, China predicted tested from 2019 2021. According results, method provided more main rainband mean ACC 0.3, improvement 0.09 over weighted average 0.21 2019–2021, exhibiting significant other methods. shows have great potential improving short-term

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an Ensemble Multi-stage Machine for Prediction of Breast Cancer Survivability

Prediction of cancer survivability using machine learning techniques has become a popular approach in recent years. ‎In this regard, an important issue is that preparation of some features may need conducting difficult and costly experiments while these features have less significant impacts on the final decision and can be ignored from the feature set‎. ‎Therefore‎, ‎developing a machine for p...

متن کامل

Hypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method

Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...

متن کامل

Hypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method

Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...

متن کامل

Reconstructing Satellite-Based Monthly Precipitation over Northeast China Using Machine Learning Algorithms

Attaining accurate precipitation data is critical to understanding land surface processes and global climate change. The development of satellite sensors and remote sensing technology has resulted in multi-source precipitation datasets that provide reliable estimates of precipitation over un-gauged areas. However, gaps exist over high latitude areas due to the limited spatial extent of several ...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Atmosphere

سال: 2022

ISSN: ['2073-4433']

DOI: https://doi.org/10.3390/atmos13091424