Multi-Objective Gray Wolf Optimizer with Cost-Sensitive Feature Selection for Predicting Students’ Academic Performance in College English

نویسندگان

چکیده

Feature selection is a widely utilized technique in educational data mining that aims to simplify and reduce the computational burden associated with analysis. However, previous studies have overlooked high costs involved acquiring certain types of data. In this study, we investigate application multi-objective gray wolf optimizer (GWO) cost-sensitive feature predict students’ academic performance college English, while minimizing both prediction error cost. To improve binary GWO, novel position update method mechanism for a, b, d are proposed. Additionally, adaptive mutation Pareto optimal solutions improves convergence avoids falling into local traps. The repairing duplicate expands population diversity reduces Experiments using UCI datasets demonstrate proposed algorithm outperforms existing state-of-the-art algorithms hypervolume (HV), inverted generational distance (IGD), solutions. Finally, when predicting students superiority again confirmed, as well its acquisition key features impact selection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

team teaching in english for academic purpose classrooms

تحقیق حاضر به منظور بررسی کارآیی بین دو روش تدریس زبان انگلیسی با اهداف دانشگاهی به نامهای تدریس گروهی و تدریس انفرادی انجام شد. بدین منظور، سه کلاس انگلیسی با اهداف دانشگاهی مربوط به دانشجویان رشته جغرافیا، کامپیوتر و فقه و حقوق به روش گروهی توسط یک مدرس زبان انگلیسی و یک مدرس درس تخصصی در استان یزد در طول ترم پاییز سال تحصیلی 1390-1389 تدریس گردید. همزمان، سه کلاس زبان انگلیسی دیگر با اهداف د...

15 صفحه اول

Multi-objective Optimization of Stirling Heat Engine Using Gray Wolf Optimization Algorithm (TECHNICAL NOTE)

The use of meta-heuristic optimization methods have become quite generic in the past two decades. This paper provides a theoretical investigation to find optimum design parameters of the Stirling heat engines using a recently presented nature-inspired method namely the gray wolf optimization (GWO). This algorithm is utilized for the maximization of the output power/thermal efficiency as well as...

متن کامل

Cost-sensitive Dynamic Feature Selection

We present an instance-specific test-time dynamic feature selection algorithm. Our algorithm sequentially chooses features given previously selected features and their values. It stops the selection process to make a prediction according to a user-specified accuracy-cost trade-off. We cast the sequential decision-making problem as a Markov Decision Process and apply imitation learning technique...

متن کامل

Evolutionary Multi-Objective Feature Selection

Feature selection is one of the most pervasive problems in pattern recognition. It can be posed as a multiobjective optimisation problem, since, in the simplest case, it involves feature subset cardinality minimisation and performance maximisation. In many problem domains, such as in medical or engineering diagnosis, performance can more appropriately be assessed by ROC analysis, in terms of cl...

متن کامل

The Role of Achievement Goals Orientation and Self-Regulation on Predicting College Students’ Academic Performance

Introduction: Environmental factors, motivational characteristics, and cognitive strategies play an important role in students’ academic performance. The main objective of this study was to investigate the role of achievement goals orientation and self-regulation in predicting academic performance among male and female college students. Methods: This study was conducted based on assumptions of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11153396