Multiple Kernel based KNN Classifiers for Vehicle Classification
نویسندگان
چکیده
منابع مشابه
Adaptive KNN Classification Based on Laplacian Eigenmaps and Kernel Mixtures
K Nearest Neighbor (kNN) is one of the most popular machine learning techniques, but it often fails to work well with inappropriate choice of distance metric or due to the presence of a lot of irrelated features. Linear and non-linear feature transformation methods have been applied to extract classrelevant information to improve kNN classification. In this paper, I describe kNN classification ...
متن کاملApplication of committee kNN classifiers for gene expression profile classification
In this study, we develop a two-class classification system based on a committee of k-Nearest Neighbour (kNN) classifiers. The system includes a sequence of simple data preprocessing steps. Each committee consists of 5 kNN classifiers of different architectures. Each classifier on the committee takes in a different set of features. The classification system is then applied to a set of microarra...
متن کاملClassification with Kernel Mahalanobis Distance Classifiers
Within the framework of kernel methods, linear data methods have almost completely been extended to their nonlinear counterparts. In this paper, we focus on nonlinear kernel techniques based on the Mahalanobis distance. Two approaches are distinguished here. The first one assumes an invertible covariance operator, while the second one uses a regularized covariance. We discuss conceptual and exp...
متن کاملTransductive Reliability Estimation for Kernel Based Classifiers
Estimating the reliability of individual classifications is very important in several applications such as medical diagnosis. Recently, the transductive approach to reliability estimation has been proved to be very efficient when used with several machine learning classifiers, such as Naive Bayes and decision trees. However, the efficiency of the transductive approach for state-of-the art kerne...
متن کاملGene Subset Selection for Kernel-Based Classifiers
In microarray data analysis, gene selection has been a central issue in recent years. Gene selection is often used to identify genes most relevant to a specific classification task, for example, those differentiate between normal and cancerous tissue samples. Gene selection plays essential roles in classification tasks; it improves the classification accuracy by using only discriminative genes,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2013
ISSN: 0975-8887
DOI: 10.5120/12359-8673