Multiple positive solutions for periodic boundary value problem via variational methods

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Solutions for a Fractional Difference Boundary Value Problem via Variational Approach

and Applied Analysis 3 Definition 2.2. Let f be any real-valued function and ν ∈ 0, 1 . The left discrete fractional difference and the right discrete fractional difference operators are, respectively, defined as tΔaf t ΔtΔ − 1−ν a f t 1 Γ 1 − ν Δ t ν−1 ∑ s a t − s − 1 −ν f s , t ≡ a − ν 1 mod1 , bΔt f t −ΔbΔ 1−ν t f t 1 Γ 1 − ν −Δ b ∑ s t 1−ν s − t − 1 −ν f s , t ≡ b ν − 1 mod1 . 2.2 Definitio...

متن کامل

Existence of Positive Solutions to a Singular Boundary-value Problem Using Variational Methods

In this article, we study a class of nonlinear singular boundaryvalue problems. We show the existence of positive weak solutions by using variational methods.

متن کامل

Existence and uniqueness of solutions for a periodic boundary value problem

In this paper, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in Banach spaces admitting the existence of a lower solution.

متن کامل

Multiple Positive Solutions to a Fourth-order Boundary-value Problem

We study the existence, localization and multiplicity of positive solutions for a nonlinear fourth-order two-point boundary value problem. The approach is based on critical point theorems in conical shells, Krasnosel’skĭı’s compression-expansion theorem, and unilateral Harnack type inequalities.

متن کامل

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tamkang Journal of Mathematics

سال: 2008

ISSN: 2073-9826,0049-2930

DOI: 10.5556/j.tkjm.39.2008.21