Multiple Signaling Pathways in Flow-Mediated Endothelial Mechanotransduction
نویسندگان
چکیده
منابع مشابه
Multiple signaling pathways in flow-mediated endothelial mechanotransduction: PYK-ing the right location.
The endothelial monolayer is a signal transduction interface for blood-borne mechanical as well as chemical stimuli. The structural deformation arising from a mechanical stimulus, such as a change of hemodynamic shear stress, is conceptually different from the binding of a hormone or other agonist to its specific receptor, yet both elicit important endothelial signaling responses. Mechanical an...
متن کاملFlow-mediated endothelial mechanotransduction.
Mechanical forces associated with blood flow play important roles in the acute control of vascular tone, the regulation of arterial structure and remodeling, and the localization of atherosclerotic lesions. Major regulation of the blood vessel responses occurs by the action of hemodynamic shear stresses on the endothelium. The transmission of hemodynamic forces throughout the endothelium and th...
متن کاملCell mechanotransduction: cytoskeleton and related signaling pathways
Mechanical stimuli regulate a variety of cell physiological functions including gene induction, protein synthesis, proliferation and/or differentiation; understanding mechanotransduction at the cellular level is key to understanding basic biology. Here on Earth, signal transduction affects a wide array of receptors and ligands that signal induction of gene expression. The most common signaling ...
متن کاملMechanotransduction and flow across the endothelial glycocalyx.
In this inaugural paper, we shall provide an overview of the endothelial surface layer or glycocalyx in several roles: as a transport barrier, as a porous hydrodynamic interface in the motion of red and white cells in microvessels, and as a mechanotransducer of fluid shearing stresses to the actin cortical cytoskeleton of the endothelial cell. These functions will be examined from a new perspec...
متن کاملRecruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro.
The luminal surface of rat lung microvascular endothelial cells in situ is sensitive to changing hemodynamic parameters. Acute mechanosignaling events initiated in response to flow changes in perfused lung microvessels are localized within specialized invaginated microdomains called caveolae. Here we report that chronic exposure to shear stress alters caveolin expression and distribution, incre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arteriosclerosis, Thrombosis, and Vascular Biology
سال: 2002
ISSN: 1079-5642,1524-4636
DOI: 10.1161/01.atv.0000034391.00347.71