Multiple Stieltjes constants and Laurent type expansion of the multiple zeta functions at integer points
نویسندگان
چکیده
In this article, we study the local behaviour of multiple zeta functions at integer points and write down a Laurent type expansion around these points. Such an involves convergent power series whose coefficients are obtained by regularisation process, similar to one used in defining classical Stieltjes constants for Riemann function. We therefore call constants. The remaining part above mentioned is then expressed terms arising smaller depths.
منابع مشابه
the relationship between multiple intelligences and english proficiency of efl learners at payame noor university
این پژوهش برای بررسی پیوند احتمالی میان هوش های چندگانه – پیشنهاد شد? هاوارد گاردنر، 1983– (هم به گونه یکپارچه و هم به گونه بند بند) از یک سو و توانش انگلیسی دانشجویان ایرانی دانشگاه پیام نور در رشته زبان انگلیسی از سوی دیگر انجام گرفت. برای این کار، تافلpbt و پرسش نامه هوش های چندگانه میان 102 دانشجو در دانشگاه پیام نور شهریار پخش شد. نتایج بررسی داده ها نشان می دهد که در اندازه معنا داری 5 در...
15 صفحه اولSeries of zeta values , the Stieltjes constants , and a sum
We present a variety of series representations of the Stieltjes and related constants, the Stieltjes constants being the coefficients of the Laurent expansion of the Hurwitz zeta function ζ(s, a) about s = 1. Additionally we obtain series and integral representations of a sum Sγ(n) formed as an alternating binomial series from the Stieltjes constants. The slowly varying sum Sγ(n) + n is an impo...
متن کاملthe investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
Multiple finite Riemann zeta functions
Observing a multiple version of the divisor function we introduce a new zeta function which we call a multiple finite Riemann zeta function. We utilize some q-series identity for proving the zeta function has an Euler product and then, describe the location of zeros. We study further multi-variable and multi-parameter versions of the multiple finite Riemann zeta functions and their infinite cou...
متن کاملMultiple q-zeta functions and multiple q-polylogarithms
For every positive integer d we define the q-analog of multiple zeta function of depth d and study its properties, generalizing the work of Kaneko et al. who dealt with the case d = 1. We first analytically continue it to a meromorphic function on C with explicit poles. In our Main Theorem we show that its limit when q ↑ 1 is the ordinary multiple zeta function. Then we consider some special va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Selecta Mathematica-new Series
سال: 2021
ISSN: ['1022-1824', '1420-9020']
DOI: https://doi.org/10.1007/s00029-021-00719-1