Multiple testing correction in linear mixed models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing multiple variance components in linear mixed-effects models.

Testing zero variance components is one of the most challenging problems in the context of linear mixed-effects (LME) models. The usual asymptotic chi-square distribution of the likelihood ratio and score statistics under this null hypothesis is incorrect because the null is on the boundary of the parameter space. During the last two decades many tests have been proposed to overcome this diffic...

متن کامل

Accelerated proliferation correction factors in linear-quadratic and multiple-component models

Background: Study in design to incorporate accelerated proliferation correction factors into linearquadratic and multiple-component models. Materials and Methods: Accelerated proliferation rate correction factor has been incorporated into the linearquadratic and the multiple component models by applying accelerated exponential cell growth to explain the tumor cell kinetics and estimates proper ...

متن کامل

Improved testing inference in mixed linear models

Mixed linear models are commonly used in repeated measures studies. They account for the dependence amongst observations obtained from the same experimental unit. Oftentimes, the number of observations is small, and it is thus important to use inference strategies that incorporate small sample corrections. In this paper, we develop modified versions of the likelihood ratio test for fixed effect...

متن کامل

Multivariate linear mixed models for multiple outcomes.

We propose a multivariate linear mixed (MLMM) for the analysis of multiple outcomes, which generalizes the latent variable model of Sammel and Ryan. The proposed model assumes a flexible correlation structure among the multiple outcomes, and allows a global test of the impact of exposure across outcomes. In contrast to the Sammel-Ryan model, the MLMM separates the mean and correlation parameter...

متن کامل

Parametric bootstrap methods for bias correction in linear mixed models

The empirical best linear unbiased predictor (EBLUP) in the linear mixed model (LMM) is useful for the small area estimation, and the estimation of the mean squared error (MSE) of EBLUP is important as a measure of uncertainty of EBLUP. To obtain a second-order unbiased estimator of the MSE, the second-order bias correction has been derived mainly based on Taylor series expansions. However, thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Genome Biology

سال: 2016

ISSN: 1474-760X

DOI: 10.1186/s13059-016-0903-6