Multiple Time Scales Recurrent Neural Network for Complex Action Acquisition
نویسندگان
چکیده
منابع مشابه
Multiple Time Scales Recurrent Neural Network for Complex Action Acquisition
This paper presents preliminary results of complex action learning based on a multiple time-scales recurrent neural network (MTRNN) model embodied in the iCub humanoid robot. The model was implemented as part of Aquila cognitive robotics toolkit and accelerated through the compute unified device architecture (CUDA) making use of massively parallel GPU (graphics processing unit) devices that sig...
متن کاملA Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملA Recurrent Neural Network for Multiple Language Acquisition: Starting with English and French
How humans acquire language, and in particular two or more different languages with the same neural computing substrate, is still an open issue. To address this issue we suggest to build models that are able to process any language from the very beginning. Here we propose a developmental and neuro-inspired approach that processes sentences word by word with no prior knowledge of the semantics o...
متن کاملHistorical Consistent Complex Valued Recurrent Neural Network
Recurrent Neural Networks are in the scope of the machine learning community for many years. In the current paper we discuss the Historical Consistent Recurrent Neural Network and its extension to the complex valued case. We give some insights into complex valued back propagation and its application to the complex valued recurrent neural network training. Finally we present the results for the ...
متن کاملA BoW-equivalent Recurrent Neural Network for Action Recognition
Bag-of-words (BoW) models are widely used in the field of computer vision. A BoW model consists of a visual vocabulary that is generated by unsupervised clustering the features of the training data, e.g., by using kMeans. The clustering methods, however, struggle with large amounts of data, in particular, in the context of action recognition. In this paper, we propose a transformation of the st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Computational Neuroscience
سال: 2011
ISSN: 1662-5188
DOI: 10.3389/conf.fncom.2011.52.00009