Multiplicity results for a class of semilinear elliptic and parabolic boundary value problems
نویسندگان
چکیده
منابع مشابه
existence results for a class of semilinear elliptic boundary value problems
we consider the semilinear elliptic boundary value problem = ∈∂ω− δ = ∈ωu x xu x f u x x( ) 0;( ) λ ( ( ));where λ > 0 is a parameter, ω is a bounded region in rn with a smooth boundary, and f is asmooth function. we prove, under some additional conditions, the existence of a positive solution for λlarge. we prove that our solution u for λ large is such that = →∞∈ω|| u ||: sup| u(x) |xas λ ...
متن کاملExistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملexistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
this study concerns the existence and multiplicity of positive weak solutions for a class ofsemilinear elliptic systems with nonlinear boundary conditions. our results is depending onthe local minimization method on the nehari manifold and some variational techniques. alsoby using mountain pass lemma, we establish the existence of at least one solution withpositive energy.
متن کاملMultiplicity of Solutions for Elliptic Boundary Value Problems
In this article, we study the existence of infinitely many solutions for the semilinear elliptic equation −∆u+a(x)u = f(x, u) in a bounded domain of RN (N ≥ 3) with the Dirichlet boundary conditions, where the primitive of the nonlinearity f is either superquadratic at infinity or subquadratic at zero.
متن کاملMultiplicity of solutions for quasilinear elliptic boundary-value problems
This paper is concerned with the existence of multiple solutions to the boundary-value problem −(φp(u )) = λφq(u) + f(u) in (0, 1) , u(0) = u(1) = 0 , where p, q > 1, φx(y) = |y| y, λ is a real parameter, and f is a function which may be sublinear, superlinear, or asymmetric. We use the time map method for showing the existence of solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1985
ISSN: 0022-247X
DOI: 10.1016/0022-247x(85)90320-8