Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities
نویسندگان
چکیده
<p style='text-indent:20px;'>This paper is concerned with the study of multiple positive solutions to following elliptic problem involving a nonhomogeneous operator nonstandard growth <inline-formula><tex-math id="M1">\begin{document}$ p $\end{document}</tex-math></inline-formula>-<inline-formula><tex-math id="M2">\begin{document}$ q $\end{document}</tex-math></inline-formula> type and singular nonlinearities</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{ \begin{alignedat}{2} {} - \mathcal{L}_{p,q} u &amp; = \lambda \frac{f(u)}{u^\gamma}, \ u&gt;0 &amp;&amp; \quad\mbox{ in } \, \Omega, \\ 0 on \partial\Omega, \end{alignedat} \right. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where id="M3">\begin{document}$ \Omega bounded domain id="M4">\begin{document}$ \mathbb{R}^N id="M5">\begin{document}$ C^2 boundary, id="M6">\begin{document}$ N \geq 1 $\end{document}</tex-math></inline-formula>, id="M7">\begin{document}$ &gt;0 real parameter,</p><p id="FE2"> : {\rm{div}}(|\nabla u|^{p-2} \nabla + |\nabla u|^{q-2} u), style='text-indent:20px;'><inline-formula><tex-math id="M8">\begin{document}$ 1&lt;p&lt;q&lt; \infty id="M9">\begin{document}$ \gamma \in (0,1) id="M10">\begin{document}$ f continuous nondecreasing map satisfying suitable conditions. By constructing two distinctive pairs strict sub super solution, using fixed point theorems by Amann [<xref ref-type="bibr" rid="b1">1</xref>], we prove existence three cone id="M11">\begin{document}$ C_\delta(\overline{\Omega}) certain range id="M12">\begin{document}$ $\end{document}</tex-math></inline-formula>.</p>
منابع مشابه
Degenerate elliptic equations with singular nonlinearities
The behavior of the “minimal branch” is investigated for quasilinear eigenvalue problems involving the p-Laplace operator, considered in a smooth bounded domain of RN , and compactness holds below a critical dimension N #. The nonlinearity f (u) lies in a very general class and the results we present are new even for p = 2. Due to the degeneracy of p-Laplace operator, for p = 2 it is crucial to...
متن کاملExistence of Radial Solutions for Quasilinear Elliptic Equations with Singular Nonlinearities
We prove the existence of radial solutions of the quasilinear elliptic equation div(A(|Du|)Du) + f(u) = 0 in R, n > 1, where f is either negative or positive for small u > 0, possibly singular at u = 0, and growths subcritically for large u. Our proofs use only elementary arguments based on a variational identity. No differentiability assumptions are made on f .
متن کاملMultiple Positive Solutions for Singular Elliptic Equations with Concave-Convex Nonlinearities and Sign-Changing Weights
Recommended by Pavel Drabek We study existence and multiplicity of positive solutions for the following Dirichlet equations: −Δu − μ/|x| 2 u λfx|u| q−2 u gx|u| 2 * −2 u in Ω, u 0 on ∂Ω, where 0 ∈ Ω ⊂ R N N ≥ 3 is a bounded domain with smooth boundary ∂Ω, λ > 0, 0 ≤ μ < μ N − 2 2 /4, 2 * 2N/N − 2, 1 ≤ q < 2, and f, g are continuous functions on Ω which are somewhere positive but which may change...
متن کاملMultiplicity of Solutions for Singular Semilinear Elliptic Equations with Critical Hardy-sobolev Exponents
where Ω ⊂ R(N ≥ 4) is an open bounded domain with smooth boundary, β > 0, 0 ∈ Ω, 0 ≤ s < 2, 2∗(s) := 2(N − s) N − 2 is the critical Hardy-Sobolev exponent and, when s = 0, 2∗(0) = 2N N − 2 is the critical Sobolev exponent, 0 ≤ μ < μ := (N − 2) 4 . In [1] A. Ferrero and F. Gazzola investigated the existence of nontrivial solutions for problem (1.1) with β = 1, s = 0. In [2] D. S. Kang and S. J. ...
متن کاملSemilinear Elliptic Equations with Generalized Cubic Nonlinearities
A semilinear elliptic equation with generalized cubic nonlinearity is studied. Global bifurcation diagrams and the existence of multiple solutions are obtained and in certain cases, exact multiplicity is proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Analysis
سال: 2022
ISSN: ['1534-0392', '1553-5258']
DOI: https://doi.org/10.3934/cpaa.2022056