Multipliers of weighted $l^{p}$ spaces
نویسندگان
چکیده
منابع مشابه
Complex interpolation of weighted noncommutative Lp-spaces
Let M be a semifinite von Neumann algebra equipped with a semifinite normal faithful trace τ . Let d be an injective positive measurable operator with respect to (M, τ ) such that d is also measurable. Define Lp(d) = {x ∈ L0(M) : dx+ xd ∈ Lp(M)} and ‖x‖Lp(d) = ‖dx+ xd‖p . We show that for 1 6 p0 < p1 6 ∞, 0 < θ < 1 and α0 > 0, α1 > 0 the interpolation equality (Lp0(d 0), Lp1(d α))θ = Lp(d ) hol...
متن کاملFourier Multipliers on Weighted L-spaces
In his 1986 paper in the Rev. Mat. Iberoamericana, A. Carbery proved that a singular integral operator is of weak type (p, p) on Lp(Rn) if its lacunary pieces satisfy a certain regularity condition. In this paper we prove that Carbery’s result is sharp in a certain sense. We also obtain a weighted analogue of Carbery’s result. Some applications of our results are also given.
متن کاملMultipliers on Weighted Besov Spaces of Analytic Functions
We characterize the space of multipliers between certain weighted Besov spaces of analytic functions. This extend and give a new proof of a result of Wojtaszczyk about multipliers between Bergman spaces. Introduction. P. Wojtaszczyk [W], using certain factorization theorems due to Maurey and Grothendieck, proved the following results: Let α > 0, 0 < p ≤ 2 ≤ q < ∞ and 1r = 1 p − 1q . (0.1) (Bq, ...
متن کاملKorovkin-Type Theorems in Weighted Lp-Spaces via Summation Process
Korovkin-type theorem which is one of the fundamental methods in approximation theory to describe uniform convergence of any sequence of positive linear operators is discussed on weighted Lp spaces, 1 ≤ p < ∞ for univariate and multivariate functions, respectively. Furthermore, we obtain these types of approximation theorems by means of A-summability which is a stronger convergence method than ...
متن کاملMaximal regularity for evolution equations in weighted Lp - spaces
LetX be a Banach space and let A be a closed linear operator on X. It is shown that the abstract Cauchy problem u̇(t)+ Au(t) = f (t), t > 0, u(0) = 0, enjoys maximal regularity in weighted Lp-spaces with weights ω(t) = tp(1−μ), where 1/p < μ, if and only if it has the property of maximal Lp-regularity. Moreover, it is also shown that the derivation operator D = d/dt admits anH∞-calculus in weigh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1991
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-98-2-131-145