Multivariate Adaptive Step Fruit Fly Optimization Algorithm Optimized Generalized Regression Neural Network for Short-Term Power Load Forecasting

نویسندگان

چکیده

Short-term load forecasting plays a significant role in the management of power plants. In this paper, we propose multivariate adaptive step fruit fly optimization algorithm (MAFOA) to optimize smoothing parameter generalized regression neural network (GRNN) short-term forecasting. addition, due substantial impact some external factors including temperature, weather types, and date types on load, take these into account an efficient interval partition technique handle unstructured data. To verify performance MAFOA-GRNN, data are used for empirical analysis Wuhan City, China. The results demonstrate that accuracy MAFOA applied GRNN outperforms benchmark methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm

0950-7051/$ see front matter 2012 Elsevier B.V. A http://dx.doi.org/10.1016/j.knosys.2012.08.015 ⇑ Corresponding author. Tel.: +86 15811424568; fa E-mail address: [email protected] (S. Guo). Accurate annual power load forecasting can provide reliable guidance for power grid operation and power construction planning, which is also important for the sustainable development of electric power indus...

متن کامل

Short-Term Load Forecasting in Power Systems Using Adaptive Fuzzy Critic Based Neural Network

Load forecasting constitutes an important tool for efficient planning and operation of power systems and its significance has been intensifying particularly, because of the recent movement towards open energy markets and the need to assure high standards on reliability. Accurate load forecasting is of great importance for power system operation. It is the basis of economic dispatch, hydrotherma...

متن کامل

Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network

A reinforcement learning algorithm is proposed to improve the accuracy of short-term load forecasting (STLF) in this article. The proposed model integrates radial basis function neural network (RBFNN), support vector regression (SVR), and adaptive annealing learning algorithm (AALA). In the proposed methodology, firstly, the initial structure of RBFNN is determined by using an SVR. Then, an AAL...

متن کامل

Short Term Load Forecasting Using Neural Network Trained with Genetic Algorithm & Particle Swarm Optimization

Short term load forecasting is very essential to the operation of electricity companies. It enhances the energy-efficient and reliable operation of power system. Artificial neural networks have long been proven as a very accurate non-linear mapper. ANN based STLF models generally use Back propagation algorithm which does not converge optimally & requires much longer time for training, which mak...

متن کامل

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Environmental Science

سال: 2022

ISSN: ['2296-665X']

DOI: https://doi.org/10.3389/fenvs.2022.873939