Multivariate Classification of China’s Regional Energy Consumption Pattern
نویسندگان
چکیده
منابع مشابه
Advancing emotion theory with multivariate pattern classification.
Characterizing how activity in the central and autonomic nervous systems corresponds to distinct emotional states is one of the central goals of affective neuroscience. Despite the ease with which individuals label their own experiences, identifying specific autonomic and neural markers of emotions remains a challenge. Here we explore how multivariate pattern classification approaches offer an ...
متن کاملeconomic optimization and energy consumption in tray dryers
دراین پروژه به بررسی مدل سازی خشک کردن مواد غذایی با استفاده از هوای خشک در خشک کن آزمایشگاهی نوع سینی دار پرداخته شده است. برای آنالیز انتقال رطوبت در طی خشک شدن به طریق جابجایی، یک مدل لایه نازک برای انتقال رطوبت، مبتنی بر معادله نفوذ فیک در نظر گفته شده است که شامل انتقال همزمان جرم و انرژی بین فاز جامد و گاز می باشد. پروفایل دما و رطوبت برای سه نوع ماده غذایی شامل سیب زمینی، سیب و موز در طی...
15 صفحه اولRegional climate changes and their effects on monthly energy consumption in buildings in Iran
This present research work was carried out to evaluate the energy consumption in a typical Iranian building based on the forecast of climatic variables. Thus, the LARS-WG model was validated for some northwest stations of Iran, including Tabriz, Ardebil, Oromieh, Kermanshah, Hamedan, Sannandaj, Qazvin, and Zanjan. The average monthly outdoor temperature was forecasted from 2011 to 2100. The rel...
متن کاملCommon Spatial Pattern Using Multivariate EMD for EEG Classification
Brain-computer interface (BCI) is a system to translate humans thoughts into commands. For electroencephalography (EEG) based BCI, motor imagery is considered as one of the most effective ways. This paper presents a method for classifying EEG during motor-imagery by the combination of well-known common spatial pattern (CSP) with so-called multivariate empirical mode decomposition (MEMD), which ...
متن کاملLocal Position Classification for Pattern Discovery in Multivariate Sequential Data
Traditional sequential data analysis largely depends on the magnitude of the data with the geometric features of individual data points sometimes being regarded as noise to such analysis. To explore whether these geometric features alone carry some useful information for a better understanding of hidden facts contained in the sequential data, a new method called local position classification (L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Sciences
سال: 2009
ISSN: 1812-5654
DOI: 10.3923/jas.2009.2576.2583