Multivariate Phenotype Association Analysis by Marker-Set Kernel Machine Regression
نویسندگان
چکیده
منابع مشابه
Multivariate phenotype association analysis by marker-set kernel machine regression.
Genetic studies of complex diseases often collect multiple phenotypes relevant to the disorders. As these phenotypes can be correlated and share common genetic mechanisms, jointly analyzing these traits may bring more power to detect genes influencing individual or multiple phenotypes. Given the advancement brought by the multivariate phenotype approaches and the multimarker kernel machine regr...
متن کاملRelationship between genomic distance-based regression and kernel machine regression for multi-marker association testing.
To detect genetic association with common and complex diseases, two powerful yet quite different multimarker association tests have been proposed, genomic distance-based regression (GDBR) (Wessel and Schork [2006] Am J Hum Genet 79:821–833) and kernel machine regression (KMR) (Kwee et al. [2008] Am J Hum Genet 82:386–397; Wu et al. [2010] Am J Hum Genet 86:929–942). GDBR is based on relating a ...
متن کاملMultivariate Analysis of Genotype-Phenotype Association.
With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed p...
متن کاملKernel Regression Based Machine Translation
We present a novel machine translation framework based on kernel regression techniques. In our model, the translation task is viewed as a string-to-string mapping, for which a regression type learning is employed with both the source and the target sentences embedded into their kernel induced feature spaces. We report the experiments on a French-English translation task showing encouraging resu...
متن کاملAssociation Test Based on SNP Set: Logistic Kernel Machine Based Test vs. Principal Component Analysis
GWAS has facilitated greatly the discovery of risk SNPs associated with complex diseases. Traditional methods analyze SNP individually and are limited by low power and reproducibility since correction for multiple comparisons is necessary. Several methods have been proposed based on grouping SNPs into SNP sets using biological knowledge and/or genomic features. In this article, we compare the l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genetic Epidemiology
سال: 2012
ISSN: 0741-0395
DOI: 10.1002/gepi.21663