Multiview Matrix Completion for Multilabel Image Classification
نویسندگان
چکیده
منابع مشابه
Matrix Completion for Multi-label Image Classification
Recently, image categorization has been an active research topic due to the urgent need to retrieve and browse digital images via semantic keywords. This paper formulates image categorization as a multi-label classification problem using recent advances in matrix completion. Under this setting, classification of testing data is posed as a problem of completing unknown label entries on a data ma...
متن کاملCombining Classifiers for Improved Multilabel Image Classification
We propose a stacking-like method for multilabel image classification. Our approach combines the output of binary base learners, which use different features for image description, in a simple and straightforward way: The confidence values of the base learners are fed into a support vector machine (SVM) in order to improve prediction accuracy. Experiments on the datasets of the Pascal Visual Ob...
متن کاملAdapting non-hierarchical multilabel classification methods for hierarchical multilabel classification
In most classification problems, a classifier assigns a single class to each instance and the classes form a flat (non-hierarchical) structure, without superclasses or subclasses. In hierarchical multilabel classification problems, the classes are hierarchically structured, with superclasses and subclasses, and instances can be simultaneously assigned to two or more classes at the same hierarch...
متن کاملLearning Image Conditioned Label Space for Multilabel Classification
This work addresses the task of multilabel image classification. Inspired by the great success from deep convolutional neural networks (CNNs) for single-label visualsemantic embedding, we exploit extending these models for multilabel images. Specifically, we propose an imagedependent ranking model, which returns a ranked list of labels according to its relevance to the input image. In contrast ...
متن کاملMultiview Discriminative Geometry Preserving Projection for Image Classification
In many image classification applications, it is common to extract multiple visual features from different views to describe an image. Since different visual features have their own specific statistical properties and discriminative powers for image classification, the conventional solution for multiple view data is to concatenate these feature vectors as a new feature vector. However, this sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2015
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2015.2421309