Music Recommender Adapting Implicit Context Using ‘renso’ Relation among Linked Data
نویسندگان
چکیده
منابع مشابه
Music Recommender Adapting Implicit Context Using 'renso' Relation among Linked Data
The existing music recommendation systems rely on user’s contexts or content analysis to satisfy the users’ music playing needs. They achieved a certain degree of success and inspired future researches to get more progress. However, a cold start problem and the limitation to the similar music have been pointed out. Therefore, this paper proposes a unique recommendation method using a ‘renso’ al...
متن کاملContext-Aware Music Recommender Systems
Recommender Systems (RSs) are software tools and techniques providing suggestions for items to be of use to a user [20]. In the music domain recommender systems can support information search and discovery tasks by helping the user to find relevant music items, for instance, new music tracks, or artists that the user may not even know [18, 9]. Several techniques have been proposed but most of t...
متن کاملPersonalized Implicit Learning in a Music Recommender System
Recommender systems typically require feedback from the user to learn the user’s taste. This feedback can come in two forms: explicit and implicit. Explicit feedback consists of ratings provided by the user for a number of items, while implicit feedback comes from observing user actions on items. These actions have to be interpreted by the recommender system and translated into a rating. In thi...
متن کاملA Hybrid Multi-strategy Recommender System Using Linked Open Data
In this paper, we discuss the development of a hybrid multistrategy book recommendation system using Linked Open Data. Our approach builds on training individual base recommenders and using global popularity scores as generic recommenders. The results of the individual recommenders are combined using stacking regression and rank aggregation. We show that this approach delivers very good results...
متن کاملUsing Linked Data to Build Open, Collaborative Recommender Systems
While recommender systems can greatly enhance the user experience, the entry barriers in terms of data acquisition are very high, making it hard for new service providers to compete with existing recommendation services. This paper proposes to build open recommender systems which can utilise Linked Data to mitigate the new-user, new-item and sparsity problems of collaborative recommender system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Information Processing
سال: 2014
ISSN: 1882-6652
DOI: 10.2197/ipsjjip.22.279