Music Recommender Adapting Implicit Context Using ‘renso’ Relation among Linked Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Music Recommender Adapting Implicit Context Using 'renso' Relation among Linked Data

The existing music recommendation systems rely on user’s contexts or content analysis to satisfy the users’ music playing needs. They achieved a certain degree of success and inspired future researches to get more progress. However, a cold start problem and the limitation to the similar music have been pointed out. Therefore, this paper proposes a unique recommendation method using a ‘renso’ al...

متن کامل

Context-Aware Music Recommender Systems

Recommender Systems (RSs) are software tools and techniques providing suggestions for items to be of use to a user [20]. In the music domain recommender systems can support information search and discovery tasks by helping the user to find relevant music items, for instance, new music tracks, or artists that the user may not even know [18, 9]. Several techniques have been proposed but most of t...

متن کامل

Personalized Implicit Learning in a Music Recommender System

Recommender systems typically require feedback from the user to learn the user’s taste. This feedback can come in two forms: explicit and implicit. Explicit feedback consists of ratings provided by the user for a number of items, while implicit feedback comes from observing user actions on items. These actions have to be interpreted by the recommender system and translated into a rating. In thi...

متن کامل

A Hybrid Multi-strategy Recommender System Using Linked Open Data

In this paper, we discuss the development of a hybrid multistrategy book recommendation system using Linked Open Data. Our approach builds on training individual base recommenders and using global popularity scores as generic recommenders. The results of the individual recommenders are combined using stacking regression and rank aggregation. We show that this approach delivers very good results...

متن کامل

Using Linked Data to Build Open, Collaborative Recommender Systems

While recommender systems can greatly enhance the user experience, the entry barriers in terms of data acquisition are very high, making it hard for new service providers to compete with existing recommendation services. This paper proposes to build open recommender systems which can utilise Linked Data to mitigate the new-user, new-item and sparsity problems of collaborative recommender system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Information Processing

سال: 2014

ISSN: 1882-6652

DOI: 10.2197/ipsjjip.22.279