n→π* Interactions Engender Chirality in Carbonyl Groups
نویسندگان
چکیده
منابع مشابه
n→π* Interactions Engender Chirality in Carbonyl Groups
An n→π* interaction stems from the delocalization of the electron pair (n) of a donor group into the antibonding orbital (π*) of a carbonyl group. Crystallographic analyses of five pairs of diastereoisomers demonstrate that an n→π* interaction can induce chirality in an otherwise planar, prochiral carbonyl group. Thus, a subtle delocalization of electrons can have stereochemical consequences.
متن کاملOrthogonal dipolar interactions between amide carbonyl groups.
Orthogonal dipolar interactions between amide C=O bond dipoles are commonly found in crystal structures of small molecules, proteins, and protein-ligand complexes. We herein present the experimental quantification of such interactions by employing a model system based on a molecular torsion balance. Application of a thermodynamic double-mutant cycle allows for the determination of the increment...
متن کاملIntimate interactions with carbonyl groups: dipole-dipole or n→π*?
Amide carbonyl groups in proteins can engage in C═O···C═O and C-X···C═O interactions, where X is a halogen. The putative involvement of four poles suggests that these interactions are primarily dipolar. Our survey of crystal structures with a C-X···C═O contact that is short (i.e., within the sum of the X and C van der Waals radii) revealed no preferred C-X···C═O dihedral angle. Moreover, we fou...
متن کاملChirality and projective linear groups
In recent years the term ‘chiral’ has been used for geometric and combinatorial figures which are symmetrical by rotation but not by reflection. The correspondence of groups and polytopes is used to construct infinite series of chiral and regular polytopes whose facets or vertex-figures are chiral or regular toroidal maps. In particular, the groups PSL,(Z,) are used to construct chiral polytope...
متن کاملA Donor–Acceptor Perspective on Carbonyl–Carbonyl Interactions in Proteins
Electronic delocalization, a central concept in organic chemistry, is being invoked increasingly in biological contexts [1–3]. We have discovered a non-covalent interaction in proteins, termed the n→π* interaction, in which the lone pair (n) of the oxygen (Oi–1) of a peptide bond overlaps with the antibonding orbital (π*) of the carbonyl group (C′i=Oi) of the subsequent peptide bond (Figure 1A,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Organic Letters
سال: 2014
ISSN: 1523-7060,1523-7052
DOI: 10.1021/ol5012967