Necessary Optimality Conditions for Robust Nonsmooth Multiobjective Optimization Problems
نویسندگان
چکیده
Abstract This paper deals with a robust multiobjective optimization problem involving nonsmooth/nonconvex real-valued functions. Under an appropriate constraint qualification, we establish necessary optimality conditions for weakly efficient solutions of the considered problem. These are presented in terms Karush-Kuhn-Tucker multipliers and convexificators related Examples illustrating our findings also given.
منابع مشابه
On Weak Pareto Optimality for Pseudoconvex Nonsmooth Multiobjective Optimization Problems
The purpose of this paper is to characterize the weak Pareto optimality for multiobjective pseudoconvex problem. In fact, it is a first order optimality characterization that generalize the Karush-Kuhn-Tucker condition. Moreover, this work is an extension of the single-objective case [6] to the multiobjective one with pseudoconvex continuous functions. Mathematics Subject Classification: 46N10,...
متن کاملOptimality Conditions and Duality for Nonsmooth Multiobjective Optimization Problems with Cone Constraints and Applications
Abstract: In this work, a nonsmooth multiobjective optimization problem involving generalized invexity with cone constraints and Applications (for short, (MOP)) is considered. The Kuhn-Tucker necessary and sufficient conditions for (MOP) are established by using a generalized alternative theorem of Craven and Yang. The relationship between weakly efficient solutions of (MOP) and vector valued s...
متن کاملNew optimality conditions for multiobjective fuzzy programming problems
In this paper we study fuzzy multiobjective optimization problems defined for $n$ variables. Based on a new $p$-dimensional fuzzy stationary-point definition, necessary efficiency conditions are obtained. And we prove that these conditions are also sufficient under new fuzzy generalized convexity notions. Furthermore, the results are obtained under general differentiability hypothesis.
متن کاملNecessary Optimality Conditions for Multiobjective Bilevel Programs
The multiobjective bilevel program is a sequence of two optimization problems, with the upper-level problem being multiobjective and the constraint region of the upper level problem being determined implicitly by the solution set to the lower-level problem. In the case where the Karush-Kuhn-Tucker (KKT) condition is necessary and sufficient for global optimality of all lower-level problems near...
متن کاملSufficient Second Order Optimality Conditions for C Multiobjective Optimization Problems
In this work, we use the notion of Approximate Hessian introduced by Jeyakumar and Luc [19], and a special scalarization to establish sufficient optimality conditions for constrained multiobjective optimization problems. Throughout this paper, the data are assumed to be of class C, but not necessarily of class C.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Control and Cybernetics
سال: 2022
ISSN: ['0324-8569']
DOI: https://doi.org/10.2478/candc-2022-0018