Negative scalar curvature metrics on noncompact manifolds
نویسندگان
چکیده
منابع مشابه
Dirac Operators on Hypersurfaces of Manifolds with Negative Scalar Curvature
We give a sharp extrinsic lower bound for the first eigenvalues of the intrinsic Dirac operator of certain hypersurfaces bounding a compact domain in a spin manifold of negative scalar curvature. Limiting-cases are characterized by the existence, on the domain, of imaginary Killing spinors. Some geometrical applications, as an Alexandrov type theorem, are given. Mathematics Subject Classificati...
متن کاملMetrics with Non-negative Ricci Curvature on Convex Three-manifolds
We prove that the space of smooth Riemannian metrics on the three-ball with non-negative Ricci curvature and strictly convex boundary is path-connected; and, moreover, that the associated moduli space (i.e., modulo orientation-preserving diffeomorphisms of the threeball) is contractible. As an application, using results of Maximo, Nunes, and Smith [MNS], we show the existence of properly embedd...
متن کاملMass and 3-metrics of Non-negative Scalar Curvature
Physicists believe, with some justification, that there should be a correspondence between familiar properties of Newtonian gravity and properties of solutions of the Einstein equations. The Positive Mass Theorem (PMT), first proved over twenty years ago [45, 53], is a remarkable testament to this faith. However, fundamental mathematical questions concerning mass in general relativity remain, a...
متن کاملOn Complete Noncompact Kähler Manifolds with Positive Bisectional Curvature
We prove that a complete noncompact Kähler manifold Mof positive bisectional curvature satisfying suitable growth conditions is biholomorphic to a pseudoconvex domain of C and we show that the manifold is topologically R2n. In particular, when M is a Kähler surface of positive bisectional curvature satisfying certain natural geometric growth conditions, it is biholomorphic to C2.
متن کاملPrescribed Scalar Curvature problem on Complete manifolds
Conditions on the geometric structure of a complete Riemannian manifold are given to solve the prescribed scalar curvature problem in the positive case. The conformal metric obtained is complete. A minimizing sequence is constructed which converges strongly to a solution. In a second part, the prescribed scalar curvature problem of zero value is solved which is equivalent to find a solution to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1989
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1989-0987159-2