Nelder-Mead Simplex Channel Estimation for the RF-DNA Fingerprinting of OFDM Transmitters Under Rayleigh Fading Conditions
نویسندگان
چکیده
The Internet of Things (IoT) is a collection connected devices capable interacting with the physical world and computer systems. It estimated that IoT will consist more than seventy five billion by year 2025. In addition to sheer numbers, need for security exacerbated fact many edge employ weak no encryption communication link. has been almost 70% use form encryption. Previous research suggested Specific Emitter Identification (SEI), layer technique, as means augmenting bit-level mechanisms such Radio Frequency-Distinct Native Attributes (RF-DNA) fingerprinting an SEI technique demonstrated success in discriminating radios operating within noise only channel. This work extends RF-DNA discrimination under Rayleigh fading conditions through Nelder-Mead (N-M) simplex-based channel estimator. N-M estimator estimates multipath directly from received waveform; thus, eliminating demodulation required when using constellation-based estimators. proves superior three alternative waveform-based estimation approaches increasing paths/reflections decreasing Signal-to-Noise Ratio (SNR). performance maximized assessment of: (i) fingerprints generated magnitude versus phase representation Gabor transform's coefficients, (ii) statistic-based classifier neural network-based classifier, (iii) size patch used subdivide Gabor-based time-frequency response prior calculation fingerprint features. resulting process achieves average percent correct classification 92.3% or greater channels consisting two, three, reflections/paths at SNR≥15 dB.
منابع مشابه
channel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Model-based channel estimation for OFDM signals in Rayleigh fading
This paper proposes a robust pilot-assisted channel estimation method for orthogonal frequency division multiplexing (OFDM) signals in Rayleigh fading. Our estimation method is based on nonlinear regression channel models. Unlike the linear minimum mean-squared error (LMMSE) channel estimate, the method proposed does not have to know or estimate channel statistics like the channel correlation m...
متن کاملNelder, Mead, and the Other Simplex Method
In the mid-1960s, two English statisticians working at the National Vegetable Research Station invented the Nelder–Mead “simplex” direct search method. The method emerged at a propitious time, when there was great and growing interest in computer solution of complex nonlinear real-world optimization problems. Because obtaining first derivatives of the function f to be optimized was frequently i...
متن کاملPerformance Estimation of OFDM in Multipath Rayleigh Fading Channel
In recent years high speed wireless data communications have increasingly been used in many application areas like Orthogonal Frequency Division Multiplexing (OFDM) .The principles of OFDM modulation have been in theory for a long time. But in recent years, this technology has crossed the limitations into the real world of modern communication systems to combat Inter-Symbol Interference (ISI) t...
متن کاملA Combined Nelder - Mead Simplex and Geneti
Ni olas Durand Laboratoire d'Optimisation Globale Centre d'Etudes de la Navigation A erienne 7, av Edouard Belin 31055 Toulouse Cedex Fran e durand re her he.ena .fr tel: (33) 562 17 40 54 Jean-Mar Alliot Laboratoire d'Optimisation Globale Centre d'Etudes de la Navigation A erienne 7, av Edouard Belin 31055 Toulouse Cedex Fran e alliot re her he.ena .fr tel: (33) 562 17 41 24 Abstra t It is usu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Forensics and Security
سال: 2021
ISSN: ['1556-6013', '1556-6021']
DOI: https://doi.org/10.1109/tifs.2021.3054524