Nested sampling, statistical physics and the Potts model
نویسندگان
چکیده
منابع مشابه
Nested sampling for Potts models
Nested sampling is a new Monte Carlo method by Skilling [1] intended for general Bayesian computation. Nested sampling provides a robust alternative to annealing-based methods for computing normalizing constants. It can also generate estimates of other quantities such as posterior expectations. The key technical requirement is an ability to draw samples uniformly from the prior subject to a con...
متن کاملthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولRandom-cluster multihistogram sampling for the q-state Potts model.
Using the random-cluster representation of the q-state Potts models we consider the pooling of data from cluster-update Monte Carlo simulations for different thermal couplings K and number of states per spin q. Proper combination of histograms allows for the evaluation of thermal averages in a broad range of K and q values, including noninteger values of q. Due to restrictions in the sampling p...
متن کاملStatistical description of domains in the Potts model
The Zipf power law and its connection with the inhomogeneity of the system is investigated. We describe the statistical distributions of the domain masses in the Potts model near the temperature-induced phase transition. We found that the statistical distribution near the critical point is described by the power law form with a long tail, while beyond the critical point the power law tail is su...
متن کاملSampling in Potts Model on Sparse Random Graphs
We study the problem of sampling almost uniform proper q-colorings in sparse Erdős-Rényi random graphs G(n, d/n), a research initiated by Dyer, Flaxman, Frieze and Vigoda [2]. We obtain a fully polynomial time almost uniform sampler (FPAUS) for the problem provided q > 3d + 4, improving the current best bound q > 5.5d [6]. Our sampling algorithm works for more generalized models and broader fam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2018
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2018.08.049