Network Embedding Using Semi-Supervised Kernel Nonnegative Matrix Factorization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonnegative Matrix Factorization for Semi-supervised Dimensionality Reduction

We show how to incorporate information from labeled examples into nonnegative matrix factorization (NMF), a popular unsupervised learning algorithm for dimensionality reduction. In addition to mapping the data into a space of lower dimensionality, our approach aims to preserve the nonnegative components of the data that are important for classification. We identify these components from the sup...

متن کامل

Semi-Supervised Half-Quadratic Nonnegative Matrix Factorization for Face Recognition

Face recognition is a challenging problem in computer vision. Difficulties such as slight differences between similar faces of different people, changes in facial expressions, light and illumination condition, and pose variations add extra complications to the face recognition research. Many algorithms are devoted to solving the face recognition problem, among which the family of nonnegative ma...

متن کامل

Real-Time Speech Separation by Semi-supervised Nonnegative Matrix Factorization

In this paper, we present an on-line semi-supervised algorithm for real-time separation of speech and background noise. The proposed system is based on Nonnegative Matrix Factorization (NMF), where fixed speech bases are learned from training data whereas the noise components are estimated in real-time on the recent past. Experiments with spontaneous conversational speech and real-life nonstati...

متن کامل

Online kernel nonnegative matrix factorization

Nonnegative matrix factorization (NMF) has become a prominent signal processing and data analysis technique. To address streaming data, online methods for NMF have been introduced recently, mainly restricted to the linear model. In this paper, we propose a framework for online nonlinear NMF, where the factorization is conducted in a kernel-induced feature space. By exploring recent advances in ...

متن کامل

Tight Semi-Nonnegative Matrix Factorization

The nonnegative matrix factorization is a widely used, flexible matrix decomposition, finding applications in biology, image and signal processing and information retrieval, among other areas. Here we present a related matrix factorization. A multi-objective optimization problem finds conical combinations of templates that approximate a given data matrix. The templates are chosen so that as far...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2927496